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FOREWORD 
Since its establishment in 1976, Acharya Nagarjuna University has been forging 

ahead in the path of progress and dynamism, offering a variety of courses and research 

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the 

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG, 

PG levels apart from research degrees to students from over 221 affiliated colleges spread 

over the two districts of Guntur and Prakasam. 

The University has also started the Centre for Distance Education in 2003-04 with 

the aim of taking higher education to the doorstep of all the sectors of the society. The 

centre will be a great help to those who cannot join in colleges, those who cannot afford 

the exorbitant fees as regular students, and even to housewives desirous of pursuing 

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A., 

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., 

courses at the PG level from the academic year 2003-2004 onwards. 

To facilitate easier understanding by students studying through the distance mode, 

these self-instruction materials have been prepared by eminent and experienced teachers. 

The lessons have been drafted with great care and expertise in the stipulated time by these 

teachers. Constructive ideas and scholarly suggestions are welcome from students and 

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of 

this distance mode of education. For clarification of doubts and feedback, weekly classes 

and contact classes will be arranged at the UG and PG levels respectively. 

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in the 

years to come, the Centre for Distance Education will go from strength to strength in the 

form of new courses and by catering to larger number of people. My congratulations to 

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who 

have helped in these endeavors. 

Prof. K.GangadharaRao 
M.Tech.,Ph.D., 

Vice-Chancellor I/c 
Acharya Nagarjuna University 
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Answer ONE question from each Unit.                                                        (5 x 14 = 70) 

 
UNIT – I 

 
1.  (a)(i) Given a classAi,i1,2,...,nof n sets prove that the re-exists a class 

Bi,i1,2,...,nof n disjoint sets such that their unions are equal. 

(ii) Give the axiomatic definition of probability. State the various properties of     
       probability. 

(b) Define probability measure. Establish its simple properties. 

OR 

2. (a) Write short notes on (i) σ fields (ii) conditional probability (iii) discrete probability 
space and give one example in each case. 

(b) State and prove Borel- Cantellilemma. 
 

UNIT – II 
 

3.(a) Define characteristic function. State and prove inversion formula. 
(b) State and prove Holder’s inequality. Hence, obtain Schwartz inequality. 

 

OR 

4. (a) Define distribution function. State and prove its properties. 
(b) State and prove i) Jensen and ii) Markov inequalities. 

 
UNIT – III 

 

5.  (a) State and prove  Chebychev’s form of weak law of large numbers. 
(b) Explain the types of convergence. Prove that almost sure convergence implies 

convergence in probability. 
OR 

6.  (a) State and prove Kolmogorov’s strong law of large numbers. 
(b) State and prove Kinchine’s form of W.L.L.N. 

 

 
 



UNIT – IV 
 

7. (a) Derive the distribution  of compound binomial. 
(b) Obtain the m.g.f. of truncated Poisson distribution and hence, find its mean and 

variance. 
OR 

8. (a) Define Weibull distribution. Find its m.g.f., mean and variance. 
(b) Define Laplace distribution. Obtain its characteristic function, mean and variance 

 
UNIT – V 

 

9. (a) Derive the distribution of range. 
(b) Explain p.d.f of single order statistics and Joint order statistics. 

OR 

10. (a) Letx1,x2,....xn be the set of order statistics of independent random variables, x1,x2,. ....... xn 

With common p.d.f. fxex,x0. 

(b) Write a the application of distribution of range in rectangular and exponential    

      cases. 
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LESSON -1 
SETS AND CLASSES OF EVENTS 

 
OBJECTIVES:  
 
After studying this unit, you should be able to:  

  To understanding the sets and classes of events 
  To know the concept of Structure and sets and classes of events 
  To acquire knowledge about significance of sets and classes of events 
  To understand the purpose and objectives of pivotal provisions of the sets and classes of 

events 
 
STRUCTURE: 
 
 

1.1.   Introduction 

1.2. Concept of Event: 

1.3.  Algebra of sets 

1.4.  Class of sets  

1.5.  Field and Minimal field,  

1.6.  - field and Minimal -field  

1.7.  Sequence of sets 

1.8.  Conclusion  

1.9.  Self Assessment Questions 

1.10. Further Readings 

 
1.1. INTRODUCTION: 

 

In everyday life we come across many phenomena, the nature of which cannot be 
predicted in advance, or many experiments, whose outcomes may not be known precisely. 
However we may know that the outcome has to be one of the several possibilities. The 
weight of a newborn baby cannot be known before the birth, except that nay lie in a certain 
range. When a coin is tossed, we known that the outcome has to be either a head or a tail; but 
we do not know the outcome of a particular throw in advance. 

 By a statistical experiment or simply experiment we mean not only an experiment 
such as the tossing of coin or the observation of the number of defects in a certain sample of 
N items chosen from the daily production, in which the possible outcomes are finite; but also 
the observation of a phenomenon such as the weight of a new born baby, or the weather 
condition of a certain region, where the number of possible outcomes is infinite. The concept 
of experiment is fundamental to the study of probability theory, because it is concerned with 
assigning chance to the outcomes of the statistical experiment or to possible state of nature 
and studying them. 
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 Let us denote by ω, the typical outcome of an experiment E; ω is called a sample 
point. The totally of all outcomes of E will be denoted by Ω and is called the sample space. 

1.2 EVENT: 

 A collection of outcomes of a statistical experiment E in which we are interested is called an 
event.  

 Thus an event is a subset of Ω. The number of sample points may be finite, countable 
or uncountable as illustrated by the following examples.  

Example.1: Thus in throwing a die, the results-face 5 turns up, an even number turns up are 
both events.  

Events may be of two types:  

1. Elementary Event (or) case: It is an event which cannot be broken further into smaller 
event .it is an “atom” of event. Thus, in throwing a die, each of the events 1,……..6 is an 
elementary event. Symbolically, an elementary event will be often be represented by case 
letters a, b, etc.  

2. Random(contingent) Event: A random event is obtained through the combination of 
several elementary events.  Thus, in throwing a die, the event that the odd number turns up is 
combination of three elementary events:1 or 3 or 5 turns up. This event will be often be 
represented by large case letters A, B, etc 

        We shall often use simply the word event. Whether it is elementary or compound would 
be clear the context. 

3. Mutually Exclusive Events: Events is said be mutually exclusive (or incompatible) with 
respect to an experiment if the occurrence of one of them precludes the occurrence of all the 
other every time the experiment is performed; in other words the two events cannot be 
materializing simultaneously. Thus throwing a die, the events, 2 occurs and 5 occurs are 
mutually exclusive. 

4. Exhaustive Events: A set of events in relation to be random experiment is said to be 
exhaustive if one of them must necessarily materialize every time the experiment is 
performed. Thus in throwing a die case 1,…..,6 from on exhaustive set of cases. 

5. Equally likely Cases: cases are said to be equally likely when we have no reason to 
believe that one is more likely occur than the other. Thus in drawing a card at random from a 
full pack of well-shuffled cards, one may believe that each of the cards is equally likely to 
appear and in case, each of the 52 cases is equally likely. This concept, therefore, 
presupposes the simplest hypothesis regarding the possibility of occurrences of different 
cases viz. each case is equally likely to materialize. 

6. Favourable Cases: A case ‘a’ is said to be favourable to an event A if whenever ‘a’ 
occurs. Thus in throwing a die, each of this cases 1,3,5 is favourable to the event, ‘an odd 
face turns up’ . 

Example .2: a head and a tail being denoted by H and T respectively, the cases HH, HT, TH, 
TT are mutually exclusive, exhaustive and equally likely cases for the random experiment of 
throwing a fair coin twice. 
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Example.3: In throwing two balanced dice, mutually exclusive, exhaustive and equally likely 
cases are 36 in number namely 

             1,1 , 1,2 ,....., 1,6 , 2,1 ,....., 2,6 ,....., 6,1 ,...., 6,6 , where in  , , ,  yx y x  denote the 

result of first and second throw respectively. 

1.3  ALGEBRA OF SETS: 
 

Set: A set is a collection of some elements which are it members. Thus we may have a set of 
college students, a set of some books, a set of some digits, a set of houses etc. A set can be 
denoted either by enumerating all its elements given in a brace or by indicating (also in 
braces) a rule its associates an element with a set. Thus the set of all odd numbers not 
exceeding 15 can be written as  1,3,5,7,9,11,13,15  or  2 1; 1,2,...,7 .x x   A set is often 

pictured as an oval shaped space with points denoting its elements. The diagram representing 
a set is called a Venn diagram. 

 Depending on how many elements it has, a set may be finite or infinite. The set 
 1,2,...,50M   is finite and contains 50 elements. The set of all natural numbers 

 1 1,2,..., ,...N n  is infinite. The set of all even numbers  2 2,4,...,2 ,...N n  is also infinite. 

An infinite set is said to be countable if all its elements can be enumerated. Both the sets 

1 2,N N  above are countable. The set C is all points within or on a circle of radius 

  2 2 20, , :r C x y x y r     is infinite and uncountable. Its elements cannot be enumerated. 

Universal set: It is the largest possible set of interested under a given condition. All other set 
are subsets of the universal sets. Thus if we are interested in some students of a college, a set 
containing all the students of this college may constitute an universal set. The set of all first 
year commerce students, set of all second year statistics students are all subsets of the above 
universal set. An universal set is often represented as Ω. 

Null set: It is a set containing no element. It is also called an empty set and often represented 
as  . It is a member of all other sets. 

Disjoint sets: Two sets A , B  are disjoint if they have no common element. Similarly sets 

1 ,..., mA A  are mutually disjoint if no two of them have any common element. 

 In the probability theory an elementary event or a case resulting from a random 
experiment is represented as a point in a set. A compound event A  is represented as a set 
containing all the points which stand for the elementary events of which A  is made up(i.e. 
which are favorable to A). Thus in throwing a die, each of the cases 1,…,6 is a point in the 
set. The compound event, an odd face turns up is representing them are disjoint. Events 
represented by the sets , ,A B C  are mutually exclusive. 

 The set containing all the possible points representing the elementary events of a 
random experiment i.e. the universal set is called the ‘sample space’. It is often represented as 
S . Thus in tossing a coin once,  , .S H T  In tossing a coin twice,  , , , .S HH HT TH TT  In 

throwing two dice,       1,1 , 1,2 ,..., 6,6S   represents the sample space for the throw of two 

dice, set B  denoting the event that the total of the two faces is 9. 
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Example: A coin is tossed until a head appears. Here the sample space consists of elementary 
events , , , ,...H HT TTH TTTH . These points are countable and infinite in number. The sample 
space consists of countably infinite number of cases.   

(a)    Set-operations 

Since events are sets of sample points it is essential that one becomes familiar with the 
algebra of sets, in order to understand manipulations involving events. In the following we 
assume that Ω is given. The important set operations are:  

(i) Complementation;   
(ii) Inclusion and Equality;   
(iii) Union and Intersection.                                                                                                          

 

(i) Complementation:  To every set A  we can associate another set cA  consisting of all 
points of Ω not contained in A .  The set cA  is called the complement of A .  It denotes the 

event “A does not occur”. Symbolically,     /cA A                                                                                                            

Evidently, c     and c   .                                                                                                                              
Example 1:  Suppose a coin is tossed 3 times. The possible outcomes may be denoted by 

    HHH, HHT, HTH, THH, HTT, THT, TTH, TTT 

  𝜔1 ,  𝜔2 ,  𝜔 3 ,  𝜔4 ,  𝜔5 ,  𝜔6 ,  𝜔7 ,  𝜔8                                                                                                                        

If  A   is the event that at least one head turns up,    5 71 2 3 4 6, , , , , ,A           

Then  8
cA  = {TTT}   represents the event that no head turns up.    

If B is the event that exactly one head turns up, then 

      5 76, ,B    ,  1 2 3 4 8, , , ,cB        

latter represent the event that the number of heads turning up is not equal to one. In general, 
complements of events are also events.  It may be noted that  

         / /
cc c AA A A                                                        

(ii) a. Inclusion: If all points of a set A are also points of another set B , then we say that A is 
a subset of B  or, A is included in or contained in B. This is denoted by A ⊂B or B ⊃ A.   
Symbolically, 

    A ⊂ B ( A B     ).                                                          

Evidently    

   (i) A ⊂ A, (reflexivity); 

   (ii) A ⊂ B, B ⊂ C   (ω ∈ A , 𝜔 ∈ B   ω ∈ C )    A ⊂ C (Transivity). 
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Example 2:.                             
If Ω represents the collection of all students, and A is set of all candidates who passed in first 
class and B is a set of all candidates who passed, then A⊂B.                                                                                                                           
Students who do not pass form a subset of those who do not pass in first class.  In general, if 
A⊂B, then  c cA B                              

We shall came to know that later that a subset of an event may not be an event . 

(ii) b. Equality: If A ⊂ B and B ⊂ A, then A  and B are said to be equal, denoted by A=B. 
Thus in any problem , in order to establish the equality of two sets A and B we have to prove 
that  

    A B     

Since inclusion relation is reflexive and transitive, equality relation is also reflexive and 
transitive. It is also symmetric, i.e, A = B   B = A.                                                                        

(iii) Union and Intersection: If A and B are two sets, then the set of all points ω which 
belong to either A or B is called A union B and is denoted by A ∪ B.   The set of all 
points which belong to both A and B is called “A intersection B “ and is denoted by A 
∩ B. 

Similarly the union of m sets 1 2, ,..., mA A A , namely, 
1

m

iA   is the set of all elements 

contained in at least one of 1 2, ,..., mA A A . 

 Similarly the intersection of m sets 1 2, ,..., mA A A , namely, 
1

m

i
i

A

  or simply 1 2, ,..., mA A A  is 

the set of all elements contained in all of 1 2, ,..., mA A A . 

Symbolically 

 A ∪ B = {ω : ω ∈ A or ω ∈ B} = {ω : ω belongs to at least one of the sets A or B} 

 A ∩ B = {ω : ω ∈ A and ω ∈ B} = {ω : ω ∈ both A and B }. 

 If A ⊂ B,  A ∪ B = B, A ∩ B = A  

Example3:                                                                                                                                                                                                        
A = {all the 3 tosses result in the same outcome}, 

  = { ω1, ω8 }, and  

B = {the 3 tosses have at most one tail }, 

  = { ω1 , ω2 , ω3 , ω4 }, 

then  A ∪ B = { ω1 , ω2 , ω3 , ω4 , ω8 }, 

     A ∩ B = { ω1 }. 

   If A ∩ B = ∅ then A and B are said to be disjoint or mutually exclusive. In this case and 
only in this case and only in this case A ∪ B will be denoted by A + B. Thus, A + cA  = Ω. 
We use this notation throughout the book.                                                                                                                                 
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If A ⊂ B, B ∩ cA  will be denoted by B – A and is called the proper difference of B and A. 
Evidently, B−A and A are disjoint and (B−A) + A = B. We may note that  

cA  = Ω − A. Many times A ∩ B is written as AB omitting ∩.                                                                                                                                              

We may note that 

   AB ⊂ A, A− AB = A cB  ⊂ cB ; 

   AB ⊂ B, B− AB = B cA  ⊂ B. 

Hence A cB  and B cA  are disjoint. Their union A cB  + B cA = A ∆ B is called the symmetric 
difference of A and B. Here ∆ is called the symmetric difference operation. While the proper 
difference is defined only if A ⊂ B, symmetric difference is always defined.                         

       We may note that AB + A cB  = A.                                                                                                                         

Example 4: 

   Suppose  Ω is the real line R consisting of all real points ω, 

    Ω = { ω : −∞ < ω < ∞}. 

Define 

    A = {ω : ω ∈ (−∞, a)} = {ω < a},   B = {ω : ω ∈ (c, d)} = {c < ω < d}, 

Then 

    A ∩B = ∅, if a < c < d, 

         = (c, a), if c < a < d, 

         = (c, d), if c < d < a. 

Since A ∪B = {ω : either ω < a  or  c <ω < d}, it will note be an interval if a < c < d, even 
though A and B are intervals.    

 
1.4  CLASS OF SETS: 

 A group of sets is termed as class of sets and it is denoted by  . An example is 

      , , ,H T H T  . 

LEMMA: Given a class  , 1,2,...,iA i n  of n sets there exists a class  , 1,2,...,iB i n  of 

disjoint sets such that, 
11

n n

i i
ii

A B


  

Proof : The lemma will be proved by induction. Evidently 
1 2 1 1 2 1 2 ,  (say)cA A A A A B B      

Where 
1B  and 

2B  are disjoint. 

Thus the lemma is true for 2n  . Suppose it is true for all 2mn  . Then  
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1

1
1 1

m m

i i m
i i

A A A



 

 
  
 

 
   

 

            
1

1

m

i m
i

B A 


 
  
 
  (By Induction hypothesis) 

              1
1

m c

i m
i

iB AB 


    

            
1

1

,  
m

i m
i

sayB B 


   

Where 
1mB 
 and iB  are disjoint and hence 

1mB 
 and iB  are disjoint for m1,2,...,i  . Hence 

the lemma holds for 1mn   and by induction for arbitrary n.  

Note that B A i
i i
   

Corollary: 
1 1 2 1 2 3

i 1

...c c c
iA A A A A A A





     

This is the extension of lemma to the countable class. It tells us how to get a countable class 
of disjoint sets, starting from a countable class of arbitrary sets, such that their unions are 
equal. Thus, in future, we may assume that we are given a countable class of disjoint sets, 
without loss of generality  

Proof: suppose 
i 1

iA




 . Then   belongs to some iA . Thus   may belong to 1A  or  may 

belong to 
1
cA . In the latter case   has to belong to 2A  or 

2
cA . Thus either 1 2

cA A  or 

1 2
c cA A .  In the latter case   has to belong to 3A  or 

3
cA . Continuing in this matter,   has to 

belong to either 
1 1 2 1 2 3 1 2 1, , ,..., ...c c c c c c

n nA A A A A A A A A A
etc.  Hence RHS  of (corollary) 

           Conversely, if  RHS  of 1 2 1...c c c
k kA A A A   for some k . But 

1 2 1...c c c
k k kA A A A A  . 

Hence kA  for some k . Thus 
i 1

kA




 , which establishes the equivalence of the two sets 

on the two sides of (corollary) 
 

1.5 FIELD AND MINIMAL FIELD: 

Field-Def: 

A non empty class of sets   which is closed under finite unions and complementation is 
called a field (or a algebra ).  Thus  

   A ,B A B        and  cA A     

THEOREM: A FIELD   IS CLOSED UNDER FINITE UNIONS.  CONVERSLY A 
CLASS   CLOSED UNDER COMPLIMENTATION AND FINITE UNIONS IS A FIELD. 

PROOF: suppose A is a field then  
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    (i) cA A                         

    (ii) 1 2
1

, , , .
n

n i
i

A A A A


      

But, 1 2 1 2, , , , , ,c c c
n nA A A A A A     

1

,
n

c
i

i

A


 
1

,
cn

c
i

i

A


 
  

 


 1

n

i
i

A


    

   Hence      is closed under finite unions. 

 (iii) 1 2
1

, , ,
n

n i
i

A A A A


       

    But, 1 2 1 2, , , , , ,c c c
n nA A A A A A     

 1

,
n

c
i

i

A


 
1

,
cn

c
i

i

A


 
  

 


1

n

i
i

A


    

  Hence    is closed under finite intersections also.   

Thus, from this theorem, a field is sometimes defined as a class closed under 
complementation, finite intersections and/or finite unions.   

Evidently,  if   is a field. 

    ,cA A    cA A   cA A   

Hence, we have the following corollary.  

Note:  Thus, from the above lemma, we may define a non empty class of sets   as a field, if 
   is closed under complemenations, finite intersections and/or finite unions. 

Corollary  :  Every field   contains the empty set   and the whole sample space  . 

PROOF: The class containing only   and Ω is a field.  It is the smallest field and is contained 
in every other field. It is called the degenerate or trivial field and is the power set consisting 
of every subset of a finite   is also a field and is the largest field.  If a field contains A, it has 

to contain cA  and hence contain the class  , , ,cA A   . 

But this class is a field, contained every field containing A. Therefore it is the smallest field 
containing A. 

Minimal field: consider an arbitrary class S  of sets and the smallest field containing S  is 
called the minimal field containing S  (or) the field generated by S . 

 Definition: Let the sequence  , 1,2,....,iA i n  be the mutually exclusive and exhaustive 

then  , 1,2,....,iA i n  is called a partition of  . 

In the case, when  , 1,2,....,iA i n  is a partition.   

 1 2 3 1 2 1 3... , ... ,
cc

n nA A A A A A A A A          and so on. 
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Hence the class 

 1 2 1 2 1 3 1 1 2 3 2 1 1 2 3, , ,..., , , ,..., , , ..., ,..., ... ,n n n n n n nA A A A A A A A A A A A A A A A A A A                S

 

Containing ,     and the unions of 'iA s  taken one set at a time, 2sets at a time, etc., Which is 
therefore closed under finite unions, is also closed under complementation.  Thus, it is a field. 
It is the minimal field  iF A  containing  , 1,2,....,iA i n  . 

It contains  

       
00 1 2 2

n
n

i

n n n n n
n i

         
         
         

       

Sets.  This field is also a minimal field containing  ,  1,2,....,
i

i nA    

We have see that it is very easy to obtain  F   the minimal field containing a class   if   

is a partition. In general, to obtain  F   we may proceed along the following steps. 

(i) obtain  φ,Ω, , c
i A A  such that either (or) cA A A    where ΩA   evidently   is 

closed under complementation and contain  . 

(ii) obtain the class 2  containing 
n

k 1
kB


 , where , 1,2,...,nk iB k    kB 's and n being 

arbitrary now 2   is closed under finite intersection but not under complementation. 

(iii) obtain 3 , the class of all finite unions of pair-wise disjoint subsets belonging to  2  
since they also contain complements 3  is a field and is the minimal field containing   
(provel) 

Example: let  A,B  then  

           1 , , , , , ,c cA A B B   

           2 1, , , , ,C C C CAB AB A B A B   

          

 3 2 , , , , , , ,C C C C C C C C C C C C C C C CAB A B AB A B AB AB A B AB AB A B AB A B A B AB A B A B           

  

 3  is the smallest field containing  . It coincides with the minimal field containing the 

partition  , , , .C C C CAB AB A B A B  The minimal field containing  , ,A B C  is the minimal field 

containing the partition,  , , , , , , , .C C C C C C C C C C C CABC A BC AB C ABC A B C AB C A BC A B C   
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1.6 field   AND MINIMAL σ field : 

field   : A nonempty class of sets   which is closed under complementations, and 
countable unions ( or countable intersections) is called a σ field  and σ -algebra.   

Evidently, it is a field closed under countable operations of union and intersection.  It 
possesses all the properties of a field, hence contains  null set φ  and universal set .   If the 
class   contains only a finite number of sets and is a field, it is also a σ field.    However, 
a field containing an infinite number of sets may not be a σ field.   

Theorem:  The intersection an arbitrary number of σ fields  is a σ field.   However, the 

union of two σ fields  is not a σ field.     

Example: Let  4,3,2,1  and   be the class of subsets of A  of   such that either A  

contains a finite number of points or cA  contains a finite number of points, evidently    is 
closed under complementation. It is also closed under finite unions because A B  will 
contain a finite number of points if each one of A and B is finite and  c c cA B A B    will 

contain a finite number of points, if either cA  is finite or cB  is finite. Thus either A B  

contains a finite number of points or  c
A B  contains a finite number of points. Hence 

A B    . Thus   is a field.  

 But   is not a   field.  

 Let   2i i 1,2,...iA    . Then  
i 1

2, 4,6... ,iA




  is neither finite nor the complement is 

finite, 

Hence if does not belong to ξ . 

(c)  -Field or Borel Field: 

Closure under finite operators does not implies closure operator, In ex-1.11 we have seen that 

the class   of all intervals of from  , ,   x x R   is closed under finite intersection. But it is 

not closed under countable intersection, because     
n 1

n 1 n ,0x




     

A  has empty class of sets which is closed under complementation and countable unions (or) 
uncountable. Intersection is called a   field evidently if is a field closed under countable 
operation of union and intersection. It possesses only a finite number of sets and is a field, it 
is also a   field. However a field, it is also a   field  containing a infinite number of sets 
may not be a   field. 

This is the extension of lemma to the countable class. It tells us how to get a countable class 
of disjoint sets, starting from a countable class of arbitrary sets, such that their unions are 
equal. Thus, in future, we may assume that we are given a countable class of disjoint sets, 
without loss of generality  
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Proof: suppose 
i 1

iw A




 . Then w  belongs to some iA . Thus to 1A  or w  may belong to 
1
cA . In 

the latter case w  has to belong to 2A  or 2
cA . Thus either 

1 2w cA A  or 
1 2w c cA A . In the latter 

case w  has to belong to 3A  or 3
cA . Continuing in this matter, w  has to belong to either 

1 1 2 1 2 3 1 2 1, , ,..., ...c c c c c c
n nA A A A A A A A A A

etc. Hence RHSw  of (corollary) 

           Conversely, if  RHSw  of 
1 2 1w ...c c c

k kA A A A  for some k . But 
1 2 1...c c c

k k kA A A A A  . 

Hence Ak
w  for some k.  Thus 

i 1
kw A





 , which establishes the equivalence of the two 

sets on the two sides of (corollary). 

Minimal fieldσ : 

An arbitrary class of   of sets. The smallest fieldσ containing   is called minimal 
fieldσ  

The minimal fieldσ containing the class   will be denoted by  σ  . It is the intersection of 
all fieldσ containing  . It is also called the fieldσ generated by  . If   is finite, the 
minimal field  F   containing   coincides with the minimal fieldσ  σ   containing  . 

           Consider the class   of all intervals of the form   R,,  xx , as subsets of the real 
line R. This class is closed under finite intersections, but not under complementation nor 
under countable intersections. Let  σ B  be the minimal fieldσ containing  . Then B  
contains of the form  ,x ; which are complements of sets of the form  x, . It contains 

intervals of the form   










 

1n n

1
,a, a  (by countable intersection) 

   c, ,a a   , (by complementation) 

           , ,   ,   ,  , ,  ,a b b a a b a b a b     , for a,b R  

The fieldσ  σ  , the minimal fieldσ containing one of the classes in (1) is called the 

borel field B of subsets of the real line. 

1.7 SEQUENCE OF SETS::  

An arrangement of sets in accordance with the set of natural numbers is known as a sequence 
of sets.  More specifically, to every integer n=1,2,… we assign a set. The ordered class of sets 

1 2, ,...A A a sequence  nA of sets. 

Increasing sequence of sets:  Let  nA  be a sequence of sets.  If, every set of  nA  
is a subset 

of its succeeding set i.e. 
1 ,   n nA A n  , then  nA  is known as monotonically increasing set. 

In this case we denote  nA  .  In this case  
1 1

;
n

k n k
k k

A A A A


 

    is called the limit of  nA  . 

Symbolically 
nA A . 
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Evidently A  contains all the nA ’s and is the smallest of such sets.  

Decreasing sequence of sets: Let  nA  be a sequence of sets.  If, every set of  nA  
is a subset 

of its preceding set i.e. 
1 ,   n nA A n  , then  nA  is known as monotonically decreasing 

sequence of sets.  In this case we denote  nA   . In this case 
1 1

;
n

k n k
k k

A A A A


 

    is called 

the limit of  nA  . Symbolically .nA A  . 

Evidently A  is contained in all the nA ’s and is the largest of such sets.  

Thus, if the sequence  nA is non-decreasing  or  non-increasing, the limit exists and we 

have  

                 n
1

  lim           if n n
n

n

AA A





 
 
 

 and 

                n
1

  lim n
n

n

A A





    if  nA    

Limit Infimum: Let  nA  be a sequence of sets.  The set of all points that belongs to nA  for 

all but a finite number of values of n is known as the limit infimum (or) limit inferior of the 
sequence  nA and is denoted by 

 1 2____
 except perhapes , ,..., or lim inf lim :  for  all , but a finite  number of nn n n n nn

A A A A A A A 


 

 Note:  We have 
-____

____
n 1 n 1k n k n

  lim  limn nk k n
n

A AA A
   


  

     

Limit Supermom: Let  nA  be a sequence of sets.  The set of all those elements which 

belong to nA  for infinitely many values of n is known as the limit supermom (or) limit 
superior of the sequence, usually denoted by 

           

 
-____

 or lim  sup lim :  for  all,infintely manynn n n
n

A A x x A


 

 
-____

 or lim  sup lim :  for  all,infintely manynn n n
n

A A x x A


 
    

 

Limit of arbitrary sequence of sets:  Let  nA  an arbitrary sequence of sets. For any 

sequence  nA  define 

 1 2 1inf  except perhapes , ,...,:  for  all n k k
k n

k n
n n nB A A A A A A A 






      

  1sup  , ,... ,:  belong to at least one ofn k k
k n k n

n nC A A A A 


 
     
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      In particular,  
1

k 1
kB A





 , 
2

k 2
kB A





  

        Therefore,   
1 1

k 2
kB A A





 
  

 
 1 2 2A B B    

          
1 2B B  

  Similarly, we can show that 
2 3B B , 3 4B B

, …., 1n nB B  .   

Thus,   nB  is an increasing sequence of sets and hence   

            lim n
n

B


 is 
n 1

nB



 ____

n 1 k n

lim  k nA A
 

 

   

Thus nB  is a monotonically increasing sequence with limit 
____

1

liminf lim  k nk
n k n

B A AA
 

 
   . 

B  is the set of all points which belong to almost all 
nA  (a;; but any finite number of sets).  

Similarly, 
nC  a monotonically decreasing sequence with limit  

-____

1

limsup limk nk
n k n

C A AA
 

 
   .  

C  is the set of all those points which belongs to infinitely many 
nA  . 

Since every point which belongs to almost all 
nA  belongs to infinitely many 

nA ,
 

 ____

n
____

  lim  A lim nA  . 

 If 
____

n
____

  lim  A lim nA A   (say), the limit of  nA  is said to exist and A  is called the limit of 

 nA  . 

1.8  CONCLUSION: 

A field (algebra) is closed under finite unions, finite intersections, and complements, but not 
necessarily countable operations. A σ-field (σ-algebra) extends a field by also being closed 
under countable unions and intersections. The minimal field containing a collection of sets is 
the smallest field including those sets.  The minimal σ-field containing a collection of sets is 
the smallest σ-field including them, which is critical in probability theory (e.g., Borel σ-
algebra). 

1.9  SELF ASSESSMENT QUESTIONS: 

1.  Define an event in probability theory. Give an example of an event in a real-life scenario. 
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2. Define a sequence of sets and give an example. 

3. Given a class  , 1,2,...,iA i n   of n  sets prove that there exists a class    , 1,2,...,iB i n    

of n  disjoint sets such that their unions are equal. 

4. Define minimal field. Explain the procedure of obtaining a minimal filed over a class  -  

   filed.  Extend this procedure to arrive at the minimal  -filed. 

5. Explain limit Supremum and limit infimum of sequence of sets. 

1.10  SUGGESTED READING BOOKS: 

1) Modern probability theory by B. R. Bhat, Wiley EasternLimited. 

2) An introduction to probability theory and mathematical statistics by V. K. Rohatgi, 
John Wiley. 

3) An Outline of statistics theory-1, by A.M.GOON, M.K. Gupta and B. Das 
gupta, the World Press Private Limited, Calcutta. 

4) The Theory of Probability by B.V. Gnedenko, MIR Publishers, Moscow. 

5) Discrete distributions -N.L. Johnson and S. Kotz, John wiley & Sons. 
6) ContinuousUnivariatedistributions,vol.1&2N.L.JohnsonandS.Kotz,JohnWiley&Sons. 
7) Mathematical Statistics-Parimal Mukopadhyay, New Central Book Agency (P) Ltd., 

Calcutta. 
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LESSON -2 
AXIOMATIC DEFINITION OF PROBABILITY AND 

CONTINUITY THEOREM OF PROBABILITY 
 
OBJECTIVES :  
 
After studying this unit, you should be able to:  

  To understanding the axiomatic definition of probability. 
  To know the concept of Structure and axiomatic definition of probability. 
  To acquire knowledge about significance of axiomatic definition of probability. 
  To understand the purpose and objectives of pivotal provisions of the axiomatic     
    definition of probability. 

 
STRUCTURE: 
 

2.1  Introduction 

2.2  Sample Space and class of Events: 

2.3  Axiomatic definition of probability  

2.4  Definition of Measure  

2.5  Continuity Theorem of Probability for monotonically non-decreasing sequence of    
       Events.    
     

       2.5.1 Monotonically non-increasing sequence of Events and arbitrary sequence of    
                Events. 
       2.5.2 Continuity Theorem of Probability for an arbitrary sequence of Events, whose   
                limit exists. 
 

2.6  Conditional Probability 

2.7  Conclusion 

2.8  Self Assessment Questions 

2.9  Further Readings 

 
2.1 INTRODUCTION: 
 

Probability is a mathematical framework used to quantify uncertainty and measure the 
likelihood of events occurring. The axiomatic definition of probability was introduced by 
Andrey Kolmogorov in 1933 and is based on a set of fundamental principles known as 
Kolmogorov's Axioms. These axioms provide a rigorous foundation for probability theory 
and are widely used in mathematics, statistics, and various applications. 
 
The Continuity Theorem of Probability, sometimes called the Continuity Property, 
extends the idea of additivity from finite collections of events to infinite collections. It helps 
us understand the behavior of probabilities for sequences of events that either increase or 
decrease. 
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2.2 SAMPLE SPACE AND CLASS OF EVENTS: 
 
Sample Space: 
Def.1: A random experiment is an experiment in which 
(a) All outcomes of experiment are known in advance. 
(b) Any performance of experiment results in an outcome that is not is not known in advance. 
(c) The experiment can be repeated under identical conditions. 
             

In probability theory we study this uncertainty of a random experiment. It is convenient 
to associate with each such experiment a set  ,the set of all possible outcomes of 
experiment. To engage in any meaningful discussion about the experiment, we associate with 
ca  -field S of subsets of  .we recall that a  -field is a nonempty class of subset of   
that closed under formation of countable unions and complements and contains the null set 
 .  
 
Def 2: the sample space of statistical experiment is a pair ( , S ),where 
(a)   is the set all possible of the experiment. 
(b) S  is a  -field of subsets of  . 
       

The element of   are call sample points. Any set AS  is known as an event. 
Clearly, A is a collection of sample points. We say that an event A happens if the outcome of 
the experiment corresponds to a point in A. Each one point set is known as a simple or 
elementary event. if the set  . Contains only a finite number of points, we say that ( , S ) 
is a finite sample space. If  .contains at most a countable number of points, we call ( , S ) 
a discrete sample space. If  however, . Contains uncountably many points, we say that 
( , S )is an uncountable sample space. In particular, if =

k
   or some rectangle in 

k ,We 

call it a continuous sample space, 
      
REMARK 1: The choices of S  is an important one, and some remarks are in order. If   
contains at most a countable number of points, we can always take S  to be the class of all 
subsets of  .this certainly a C Each one point set is a member of S and is the fundamental 
objet of interest, Every subset of   is an event, If   has uncountably many points ,the class 
of all subsets of   is still a  -field, but it is much to large a class of sets to be interest .one 
of the most important examples uncountable sample space is the case in which =    or   is 
an interval in   .in this case we would like all one-point subsets of    and all interval to be 
events. We use our knowledge of analysis to specify  S . We will not go into detail here 
expert to recall that the class of all semi closed intervals (a,b] generates a class 

1
  that is 

on .this class contains all one point sets and all intervals. we take 1=S= .Since we will be 

dealing mostly with the one-dimensional case. We write 1. instead of   there are many 
subsets of   that are not in 1 ,but we do not demonstrate this fact here. 
 
Example 1: Let us toss a coin. The set  is  the set of symbols H and T, where H denotes 
head and T represents tail. Also, S  is the class of all subsets of ,namely, 

     , , , ,  { }H T H T  .If the coin is tossed two times, then 

                 = , , , , , T,T  { }H H H T T H  

And 
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  = ,{( , )},{( , )},{( , )},{( , )},{( , ),( , )},( , ),( , )  { },H H H T T H T T H H H T H H T HS      

{( , ),( , )},{( , ),( , )},{( , ),( , )  },H H T T H T T H T T T H

{( , ),( , )},{( , ),( , ),( , )},{( , ),( , )( , )  },T T H T H H H T T H H H H T T T      

{( , ),( , ),( , )},{( , ),( , ),( , ), },H H T H T T H T T H T T    
Where the first element of a pair denotes the outcome of the first toss, and the second 
element, the outcome of the second toss. The event at least one head consist of sample points 
( , ),( , ),( , )H H H T T H . The event at most one head is the collection of sample points 

( , ),( , ),( , ).H T T H T T    
 
Example 2: A die is rolled n-times. The sample space is the pair  , S , where   is the set 

of all n-tuples    1 2, ,..., , 1,2,3,4,5,6 , 1,2,.., ,n ix x x x i n   and S  is the class of all subjects of 

 .   contains 6n elementary events. The event A that 1 shows at least once is he set  

          

  
  
    

'
1 2

'
1 2

1 2

, ,..., :       1

, ,..., :      1

, ,..., : 2,3,4,5,6 , 1,2,.., .

n i

n i

n i

A x x x at least once of x s is

x x x none once of x s is

x x x x i n



  

    

 

 
Example 3: A coin is tossed until the first head appears. Then 

 = , , , ,...{ ,( , ),( , , ), },T T T HH T H T T H  and S  is the class of all subsets of  . An 

equivalent way of writing   would be to look at the number of toss required for the first 
head. Clearly, this number can take values 1,2,..., so that   is the set of all positive integers. 
Thus S  is the class of all subset of positive integers. 
 
Class of Events: An event is defined as collection of outcomes of an experiment E , in which 
one is interested. Since Ω  is defined as the collection of all outcomes of E , if A  is an event , 

cA  will also be an event. It denotes non-occurrence of A . If A  is the class f all events 
associated with the experiment E  , it is closed under complementation. 
If A  and B  are events, then A B  denotes the event that at least one of the events A  or B  
occurs; A B  denotes the event that both the events A  and B  occur simultaneously. Thus A  

is closed under finite unions and intersections and is a field. If 1 2, ,..., nA A A  are events 
1

n

i
i

A

  

will denote the events that at least one event A  will occur; iA  will denote the event that all 

the events iA  occur simultaneously. Since the union and intersection can be extended to the 

case when n is infinite, A  will naturally be a field   if E  has an infinite number of 
outcomes.  
 
Thus, with each experiment E , we can associate   , the space of all outcomes and A  , the 

field   of events. For different experiments we shall have different   and different A  .  
 
This become a handicap when we have to consider outcomes of more than one experiment 
simultaneously. This handicap is avoided by considering   to be the collection of outcomes 
of all experiments “under consideration.” However A , the field   of events, will be 
associated with only a particular experiment in which one is interested, For example,   may 
consists of a dice-throwing and a coin-tossing experiment. The events of interest may be 
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based on the outcomes of coin-tossing experiment only. In this case an event is a subset of   
and not conversely. 
 
With every experiment having a finite number of possible outcomes, the class of all events 
will be a field. If the field is degenerate, the only events are   and   . These are called 
respectively as impossible and sure events in line with our proposal to associate chance with 
the events in the later chapters. If the number of possible outcomes is infinite, then the class 
of events is a field   . 
 
Definition: the space   of all outcomes of experiments together with the specification of the 

field   A  of events of sometimes called a measurable space and is denoted by the pair 

 ,   A  . Any set of A  is called a measurable set. 

Let A  be a class of events and BA  . Then for ,    A B A A  is an event. The class of all 

such events  

                    :    ,B A A B say
 

  
 
 A A   

Is a field   of subsets of B .  It is the restriction of A to subsets of B and hence possesses 
the same properties as those of A .    
Here are some examples across different contexts:  

1. Business & Economics 

 Financial Crises (e.g., 2008 Global Financial Crisis, Asian Financial Crisis) 
 Market Trends (e.g., Bull Market, Bear Market) 
 Corporate Mergers & Acquisitions 
 Product Launches 

2. Technology & Cybersecurity 

 Cyberattacks (e.g., Phishing, Ransomware, DDoS Attacks) 
 Software Updates & Releases 
 System Failures & Outages 
 AI Breakthroughs 

3. Science & Nature 

 Natural Disasters (e.g., Earthquakes, Hurricanes, Wildfires) 
 Climate Change Events (e.g., Rising Sea Levels, Heatwaves) 
 Space Exploration Missions 
 Epidemics & Pandemics 

4. Social & Cultural 

 Protests & Movements (e.g., Civil Rights Movement, Climate Strikes) 
 Major Sports Events (e.g., Olympics, FIFA World Cup) 
 Award Ceremonies (e.g., Oscars, Grammys) 
 Political Elections 
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5. Military & Conflict 

 Wars & Battles (e.g., World War I, Gulf War) 
 Peace Treaties & Agreements 
 Terrorist Attacks 
 Military Operations 

 
2.3 PROBABILITY MEASURE OR AXIOMATIC DEFINITION OF PROBABILITY:  
 

Let  Ω,S  be the sample space associated with a statistical experiment. Now, we define a 
probability set function and study some of its properties. 
 
Definition: Let  Ω,S  be the sample pace.  A set function P  defined on S  is called a 
probability measure (or simply, probability) if it satisfies the following conditions: 

i.   0,P A A  S  

ii.   1P       

iii. Let   , , 1,2,...,j jA A j S  be a disjoint sequence of sets; that is, 

 for ,j kA A j k   where   is the null set. Then 

  
1 1

,
j j

j jP PA A
 

 

 
 

 
    

where we have used the notation 
1j

jA



  to denote union of disjoint sets jA .  

 We call  P A  the probability of the event A . If there is no confusion, we will write 

PA  instead  P A  . Property iii is called countable additivity. That 0P   and P  is also 

finitely additive follows from it. 
 

Remark 1: If   is discrete and contains at most  n    points, each single point set 

 , 1,2,..., ,j j n   is an elementary event, and it is sufficient to assign probability each  j . 

Then if AS  , S is the class all students of  ,  .
A

PA P





  One such assignment is the 

equally likely assignment or the assignment of uniform probabilities. According to this 
assignment,   1/ , 1,2,..., .jP n j n    Thus /PA m n  if A  contains m  elementary events, 

1 .m n    
 
Remark 2: If   is discrete and contains a countable number of points, one cannot make an 
equally likely assignment of probabilities. It suffices to make the assignment for each 
elementary event. If AS , where S  is the class of all subsets of  , define  .

A
PA P





   

Remark 3: If   contains uncountable many point, each one-point set is an elementary event, 
and again one cannot make an equally likely assignment of probabilities. Indeed, One cannot 

assign positive probability to each elementary event without violating the axiom   1.P    In 
this case one assign probabilities to compound events consisting of intervals. For example, if 
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 0,1   and S  is the Borel  -field of all subjects of   , the assignment  P I   length of 
I , where I  is the subinterval of  , defines a probability. 
 
Remark 4: The triple  Ω, ,PS  is called a probability space. 
 
Remark 5: Let AS . We say that the odds for A  are a to b if  / ,PA a a b   and then odds 

against A  are b to a. 

Note: If 's' contains only a finite no. of sets. Then it will be sufficient. If  P .  satisfies 1,2,3 
only 

 In general if S  is only a field of events. Then  P .  defined on S  need be only finite 
additive. 

 If S  is a  -field then  P .  has to be  -additive 

           Now the triplet  Ω, , PS  where   is the space of outcomes, S  is the  -field of 
events associated with an experiment and P is a probability function defined on S  is called 
as a probability space. 
 
Discrete probability space: 
           In a sample space   if the class of events S  is generated by countable partition of 

subset of   then  Ω, , PS  is called the "discrete probability space". 
  If   is countable 

iA  could be singletons  (i 1,2,...)i   Now the set  1 2, ,...p p where 

 i ip P   is called the probability distribution on   then S  co-insides with the power 

set. 
 If   is finite and if  i ip P   is the same for all i 1,2,..., N  then this corresponds to 

the equally likely case with (1/N, 1/N,… 1/N) as the probability distribution. 
 

2.4  DEFINITION OF MEASURE: 
 
 Let Ω  be the space of all possible outcomes and S  is the  -field defined on Ω . Now a 
real valued function μ [is said to be a measure] defined on S  is called as a measure if for 

any 
1 2
, ,...A A S ,  μ  statistics the properties. 

I.   0iA   (non-negative)     

II. If 
1

n

i
i

A A


     then    
1

A i

n

i

A 


   (finite additivity) 

Note: 

 If  Ωμ  is finite then μ  is said to be a finite measure. Thus probability is a special 
case of finite measure. We may also say that probability is a normed or scaled measure. 

 All the general properties of measures will be shared by probability measure. It possess 

some original properties. Some additional property namely  P Ω 1.  

 If   Ωμ  but 
i 1

Ω IA




  such that  μ iA   , then μ  is called a  -finite measure. 

Measures such as length defined on (R,B) is a  -finite measure know the triplet  Ω, ,μS  
is called the measure space. 
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2.5  CONTINUITY THEOREM OF  PROBABILITY FOR MONOTONICALLY NON-  
       DECREASING SEQUENCE OF EVENTS: 
 
Statement: If   nA  is a monotonically non-decreasing sequence of events in a probability 

space  , , P S  whose limit is say  , then show that  

         lim lim ( )n n
n n

P P P
 

                                                                                 (1) 

 Proof:    
   Since  nA  is a monotonically non-decreasing sequence of events, we have  

1,     n n n                                                                                                          (2)                                                                                  

and by definition we have  

1

lim n nn
n






                                                          (3) 

Let us define   

1,     n n nB n             (4) 

so that nB ’s are disjoint and  from Eq.(4), we have  

1 1B    

1 2 1 2 1 1 2 2( )U U U                                           (From Eq.(2)) 

1 2 3 1 2 3 2 1 2 3 3( )U U U U U U                           (From Eq.(2)) 

     …. 

1 1

n n

i i n
i i

B
 

                                                            (5)            

From the above we may also write 

11 1
n n n

nn n

A B B
  

 

        (since nB ’s are disjoint)                                    (6)                          

   
Now, from Eqs.(3) and (6), we may write 

1

lim n nn
n

B





                                     

Now applying probability function on both sides and by using  -additivity  
axiom of probability, we have 

       
1 1 1

lim lim
n

n n n in n
n n i

P P P B P B P B
 

 
  

 
      

 
                                         (7) 

From Eq. (5), we have  

11

n n

n i i
ii

B B


                    (since iB ’s are disjoint)            

Applying probability function on both sides and by using finite- additivity axiom  
of probability, we have 

   
1 1

n n

n i i
i i

P P B P B
 

 
   

 
                                                                                (8) 

From Eqs. (7) and (8), we get 
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        
1

lim lim lim
n

n i nn n n
i

P P P B P
  



                                               (9) 

Hence the result (1). 
i.e. The probability set function and limit of sequence are interchangeable. 
 

2.5.1  CONTINUITY THEOREM OF PROBABILITY FOR MONOTONICALLY       
          NON-INCREASING SEQUENCE OF   EVENTS: 
 
Statement: If   nA  is a monotonically non-increasing sequence of events in a probability 

space  , , P S  whose limit is say , then show that  

         lim lim ( )n n
n n

P P P
 

                                  (1) 

Proof:    
Since  nA  is a monotonically non-increasing sequence of events, we have  

1,     n n n                                                                                                            (2) 

and by definition we have  

1

lim      (say)n nn
n






                                                                      (3) 

Since  nA  is a monotonically non-increasing sequence of events, we have    nA  is a 

monotonically non-decreasing sequence of events and from the above Continuity theorem of 
Probability of monotonically non-decreasing sequence of events, it follows immediately 

       lim lim ( )n n
n n

P P
 

                                         (4) 

Since  nA  , we have  

         
1 1

lim n n n
n

n n

 


 

 
       

 
              (from Eq. (3))                                        (5)        

   
Upon using Eq.(5)  in Eq. (4), we have 
 

               lim ( )nn
P P


                                                                  (6) 

 

   
 

           1 lim 1 ( ) 1 lim ( )

          lim ( )

n nn n

n
n

P P P

P P
 



        

   
                                     (7)         

 Now, from Eqs.(3) and (7), we have 

 

      
   lim lim ( )n n

n n
P P P

 
       

Hence the result (1). 
i.e. The probability set function and limit of sequence are interchangeable 
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2.5.2  CONTINUITY THEOREM OF PROBABILITY FOR AN ARBITRARY     
          SEQUENCE OF EVENTS, WHOSE LIMIT EXISTS: 
 
Statement: If   nA  is an arbitrary sequence of events in a probability space  , , P S  has a 

limit is say , then show that  

         lim lim ( )n n
n n

P P P
 

                                         (1) 

 Proof:    

 We have        i n i i n i
i n i n i n i n

P P P
   

   

   
             

   
          (2) 

If we write    and Cn i n i
i n i n

B
 

 

     ,  then     &  Cn nB                                          (3) 

and from Eq. (2), we can write  
  

     n n nP B P P C  
                          

Taking limits we get 
      

     lim lim limn n nn n n
P B P P C

  
  

                                              (4)
 

But, from the continuity theorems of probability for monotonic non-decreasing and non-
increasing sequences of events, we have 

                     lim lim      and    lim limn n n n
n n n n

P B P B P C P C
   

            (5) 

Upon using Eq.(5) in Eq.(4), we get       lim  lim lim  n n n
n n n

P B P P C
  

                          (6)   

And by definition, we have  

1 1

1 1

       lim  =  =lim         (by def. of limit infimum)

 and lim C C lim      (by def. of limit suprimum)   

n n i n
n

n n i n

n n i n
n

n n i n

B B
  


  

  


  

  

    

 

 
   (7) 

 Now, upon using Eq. (7) in Eq.(6), we get      lim lim lim n n nn
P P P


                   (8) 

But, from the hypothesis, lim n
n

  exists and therefore by definition, we have  

        
lim lim lim n n nn

        

Using this in Eq. (8), we get 

            lim lim limn n n
n n n

P P P P P P
  

                           (9) 

Hence the result (1). 
 
Remark1: Thus, σ- additivity condition is sometimes referred to as the continuity condition 
of the probability function.  The notions of continuity from below, continuity from above and 
continuity in general, are similar to the notions of continuity from the left, from the right and 
in the absolute sense for point functions. 
 
Remark2: Even though the above theorems are proved for probability measures, results 
contained therein continue to hold for finite measures with obvious modification in the proof.  
If the measure is σ-finite, it will be continuous from above but we cannot establish continuity 
from below. 
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2.6  CONDITIONAL PROBABILITY: 
 
Introduction: 
         So far we have computed probabilities of events on the assumption that no information 
was available about the experiment other than the sample space . Sometimes however it is 
that an event H which is a subset of   i.e.,  ΩH   has happened. Now using this 
information making a probability statement concerning the outcomes of another event A is 
called conditional probability. 
 
Definitions: 

         Let  Ω, ,PS  be a probability space and let HS  with   0HP  . Now for an arbitrary 

event AS  we shall write    
 HP

HAP
HAP


  and call the so defined quantity as the 

conditional probability of HA  i.e.,  HAP . Conditional probability remains undefined 
when   0HP  . 
 
Result: 

      Let  Ω, ,PS  be a probability space and let HS  with   0HP   then  Ω, , HPS  where 

   A P A H AHP   S  is probability space. 

Proof:  

(a) Clearly    A P A H 0 AHP    S   

(b) Also      
 

 
 

P Ω H P H
Ω P Ω H 1

P H P HHP


     

(c) If 
1 2, ,...A A  is a disjoint sequence of sets in S  then  

           
i 1 i 1

P HH i iP A A
 

 

   
   

   
   

                      
i 1

P H

P H

iA




 
 
 


 

But we know that from additivityσ axiom of probability we have  

           
i 1 i 1

P H P Hi iA A
 

 

 
   

 
   

          
 

 
i 1

i 1

P H

P H

i

H i

A
P A









 

  
 


  

                    
i 1

P HiA




  

                    H iP A  

Hence the third axiom 
 Ω,ζ, HP  is a probability space. 
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Remark:  
What we have done is we consider a new sample space consisting of a basic set H and 

the fieldσ ζ H SH
 of subsets  A H A H  S . 

On the space we have defined a set function HP  by multiplying the probability of each 

event by  HP

1
. 

Indeed  H H
H, ,PS  is a probability space. 

Results: 
1) Let A and B be two events with     0BP0,AP   then from the definition of conditional 
probability we have 

           
       BPBAPBAP
BP

BAP
BAP 


  

Similarly    
       APABPBAP
AP

BAP
ABP 


  

2) The above result can be extended for three results A,B,C where 
      0cP and 0BP0,AP   we have 

            CBPCBAPCBAP   
                     CPCBPCBAP   
                     BACPABPAP   

3)  For any arbitrary n events 1 2, ,...., ,nA A A  

       
1

1 2 1 3 1 2
1 1

,....,
n n

i n i
i i

P A P A P A A P A A A P A A


 

   
    

   
 

 
 

2.7  CONCLUSION: 

The study of probability theory begins with a precise understanding of the sample space and 
the class of events. The sample space Ω\OmegaΩ represents the set of all possible outcomes 
of an experiment, while the class of events (often taken as a σ\sigmaσ-algebra) consists of the 
subsets of Ω\OmegaΩ on which probability measures can be defined. This careful structuring 
is essential for a rigorous treatment of probability. 
 
Building on this foundation, the axiomatic definition of probability (via Kolmogorov’s 
axioms) provides a formal framework in which probability is defined as a function PPP that 
assigns a number between 0 and 1 to each event in the sigma -algebra. The three axioms—
non-negativity, normalization, and countable additivity—ensure that probabilities are 
consistent and behave in an intuitive manner. These axioms serve as the basis for all further 
developments in probability theory. 
 
In parallel, the definition of measure generalizes the idea of probability to more abstract 
settings.  A measure is a function defined on a σ -algebra that satisfies properties analogous 
to the axioms of probability, particularly countable additivity. This abstraction is critical for 
integrating probability with analysis and for handling spaces where classical notions of 
"length" or "volume" may not apply directly. 
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2.8  SELF ASSESSMENT QUESTIONS: 
 

1. Discuss the properties derived from the axiomatic definition of probability. 
2. Explain why probability values are always between 0 and 1 using axiomatic principles. 
3. Define a measure on a measurable space and explain the concept of a sigma-algebra. 
4. How does a probability measure differ from a general measure? Provide an example. 
5. Define conditional probability. 
6. Explain the Continuity Theorem of Probability for monotonically non-decreasing 

sequence of Events.    
7. Explain the Monotonically non-increasing sequence of Events and arbitrary sequence 

of Events. 
8. Explain the Continuity Theorem of Probability for an arbitrary sequence of Events, 

whose limit exists. 
 
2.9 SUGGESTED READING BOOKS: 

1. Modern probability theory by B. R. Bhat, Wiley EasternLimited. 
2. An introduction to probability theory and mathematical statistics by V. K. Rohatgi, 

John Wiley. 
3. AnOutlineofstatisticstheory-1, by A.M.GOON, M.K. Gupta and B. Das gupta, 

the World Press Private Limited, Calcutta. 
4. The Theory of Probability by B.V. Gnedenko, MIR Publishers, Moscow. 
5. Discrete distributions -N.L. Johnson and S. Kotz, John wiley & Sons. 
6. ContinuousUnivariatedistributions,vol.1&2N.L.JohnsonandS.Kotz,JohnWiley&Sons. 
7. Mathematical Statistics-Parimal Mukopadhyay, New Central Book Agency (P) Ltd., 

Calcutta. 
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LESSON -3 

BOREL CANTELLI LEMMA AND GEOMETRIC 
PROBABILITY 

 
OBJECTIVES :  
 
After studying this unit, you should be able to:  

   To understanding the Statistical independence of events and Geometric probability. 
  To know the concept of Structure and Statistical independence of events and Geometric 

probability. 
 To acquire knowledge about significance of Statistical independence of events and 

Geometric probability. 
 To understand the purpose and objectives of pivotal provisions of the Statistical 

independence of events and Geometric probability. 
 
STRUCTURE: 
 
 

3.1  Introduction 

3.2  Statistical independence of events 

3.3  Borel Cantelli Lemma 

3.4  Probability on finite sample spaces 

 3.4.1 Sampling with replacement 

       3.4.2 Samping without replacement 

3.5  Geometric Probability  

3.6  Conclusion 

3.7  Self Assessment Questions 

3.8  Further Readings 

 
3.1 INTRODUCTION: 
 

Probability theory provides powerful tools to analyze the occurrence of events over 
repeated trials. Two important topics in this field are the Borel-Cantelli Lemma, which 
helps determine whether an infinite sequence of events will occur infinitely often, and 
Geometric Probability, which applies probability theory to spatial problems. 
 

3.2 STATISTICAL INDEPENDENCE OF EVENTS 

We shall now introduce the notion of independence of events in suppose P(A)>0. If B 
be another event such that   

                 Then the probability of the occurrence of B would remain unaffected by the 
knowledge that A has occurred. We may then say that B is (statistically or probabilistically) 
independent of A since 
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Equation (2.20) is equivalent to  indeed we may say that B is 

independent of A, by definition, if   

                          Again , since Eq(1) is symmetrical in A and B. one should speak about the 
mutual independence of A and B rather than about A being independent of B or B being 
independent of A. Also relation Eq (1) is regarded as the definition of the mutual 
independence of A and B irrespective of whether  or   or  or  is zero or 
not although in that case the conditional probabilities will not be all defined. 

Theorem:1 

        Let  then if A and B are independent so are  

(1)A and  

(2)  and B 

(3)  and  

Proof: let A and B be independent then 

                       

Since    

This implies   

                                           

                                           

                                             

Hence A and  are independent 

(2) This can be proved in the same way as (1) has been proved  

(3) Again let A and B be independent then  

                           

       Hence  

                                         

                                          

                                              

Thus  and  are independent if A and B are independent 
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Example 1:  

         Let the four letters a, b, c and d be written down in random order. Then let A and B 
denote respectively, the events  “a proceeds b” and  “c proceeds d” the total number of such 
equations is  

 

                                                                           

Incidentally , for the mutual independence of  events  it is not enough that the 
events be pair-wise independent. This may be illustrated by taking the simple case at three 
events, say . 

Example2: 

      Let us suppose that for an experiment the sample space consists of four points only : 
. Let    as would be the case in two 

throws of a perfect coin. 

Consider three events  defined as follows: 

      

Then  

And  

         

        

So that the three events are pair-wise independent. But for mutual independence of the events 
it is also necessary that . How ever, in the present 
case, 

                                             

                           While     

This counter-example is due to Bernstein 

*If P(A) or P(B) is zero, then (2.21) is necessarily satisfied, for  and 

, and so A and B are then taken to be independent. 

Here the total number of elementary events in 4  and these are equally likely 

        Again , the number of elementary events favorable to A and the number favorable to  
must be the same, by symmetry , and so each is 12. Similarly , the number of elementary 
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events favorable to B is 12. On the other hand , the elementary events favourable to both A 
and B are  

The following six: 

    (a,b,c,d),(a,c,b,d),(a,c,d,b)(c,d,a,b),(c,a,d,b) 

Hence  P(A)=P(B) =  

While   

Thus   

And so the events are statistically independent  

In the general case of r events,  we say that these are mutually independent if 
each is independent ofall and any of the others. The definition of mutual independence of 
these events is given in terms of the following equations. 

 

                   

                                   .                     .          .           .                .      

                                   .                     .           .          .                . 

                                   .                     .            .         .                 . 

                    

 

3.3 BOREL CANTELLI  LEMMA: 

 Statement:  If  nA  is a countable collection of events and nA  is the limit supremum of 

 nA   then show that   

(a)    
1

  (i.e. convergent) 0
n

n

P A P A




                            (1) 

(b) nA 's are independent and    
1

 (i.e. divergent) 1
n

n

P A P A




                (2) 

Proof:  

(a) Since, A is the limit supremum of the sequence  nA  , by definition, we have  

      
1

A=lim n i
n i n

 

 

    

We know that , 
1

A i i
n i n i n

A A
  

  
     
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               
1

i i
n i n i n

P A P PA A
  

  
           (3) 

But from addition theorem of probability, we have 

         i i
i ni n

P PA A
 


                    (4) 

From Eqs. (3) and (4), it immediately follows 

              i
i n

P A P A



            

Taking limit on both sides, we get 

            lim lim       i
n n i n

P A P A


  
      

      . .   lim n
n

i e P A R


             (5) 

                  where   in
i n

R P A



             (6) 

        Let us define  
1

1

n

in
i

PS A



    so that   

1
i nn

i
P SA R




                  (7) 

Since  
1

i
i

P A



  is convergent, we have  

1
i

i
P A




  .  Now, let us write  

 
1

  ( )i
i

P l sayA



            (8) 

so that from Eqs. (7) & (8), we may write   

        nnl S R     

Taking limit on both sides we get,  

      lim lim nn
n n

l S R
 

                       (9) 

But, from Eq.(7), we have  

           
1

1 1
lim lim

n

i in
n n i i

P P lS A A
 

   
          

  (10) 

Thus, from  Eqs.(9) & (10),  
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 

   
lim 0     0                                         (from Eq.(5))

                   0    . .   lim 0

n
n

n
n

P AR

P A i e P A





  

  
 

Hence the proof of (a). 

(b) we have given  

        

     
   

1 1

1

A lim A A

          A A lim A

         A lim A                                                                                         (11)

( By

n i i
n i n n i n

i i
nn i n i n

i
n i n

A A

P P P

P P

   

   

  

  



 

   

  

 

   

  



 continuity theorem for monotonically incresing sequence of sets)          

 

For N>n, we see that  

               A A A A
N N

i i i i
i n i n i n i n

P P
 

   
                     (12) 

Taking  lim
N

 on both sides we get, 

           A lim A
N

i i
Ni n i n

P P


 
   

Since, Ai 's are independent, it is obviously Ai 's are also independent.  Therefore, by virtue 

of Multiplication theorem, we have 

                A lim A lim A lim 1 A
N N N

i i i i
N N Ni n i ni n i n

P P P P


    

                                     (13) 

For any 0 1,i   we have  

 

2 3

2 3 2 4 5 4

1 ... 1    
2! 3!

           since = 1 0,  = 1 0,  and so on  
2! 3! 2! 3 4! 5! 4! 5

1 1

i

N

i

i i i n

i i

i i

i i i i i i i i

N N

i i
i n i n

e

e e e




 

 
 

       

  




 

 



      

     

       

    
    

    
 

                                      (14) 
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Since,  0 A 1,iP   we may take  Ai iP   in Eq. (14), and then from Eq. (13), it 

follows 

       
   A A

A lim 1 A lim

N

i i
i n i n

P PN

i iN Ni ni n
P P e e



 
 

 

 
                   (15) 

Since, the series  
1

 i
i

P A



  is divergent, we have  Ai

i n
P




  .  Therefore, from Eq.(15), 

we have  

        A

A 0
i

i n

P

i
i n

P e e











                      (16) 

Now, from Eqs. (11) and (16), we may write 

   A lim A lim 0i
n ni n

P P e




 
                 (17) 

 

        A 1 A 1P P     

Hence, the proof of Part(b). 

 

3.4 PROBABILITY ON FINITE SAMPLE SPACES: 

         In this we restrict attention to sample spaces that have at most a finite number of points.  

Let  1 2, ,....... n     and  S be the  -field of all subsets of .  For any A S , 

                                     
j

= j
A

P A P




    

Example 1: A coin is tossed twice. The sample space consists of four points.  Under the 

uniform assignment, each of four elementary events is assigned probability
1

 
4

.      

Example 2: Three dices are rolled.  The sample space consists of 36  points. Each one –point 

set is assigned probability
3

1

6
. 

   In games of chances we usually deal with finite sample spaces where uniform probability is 
assigned to all simple events.  The same is the case in sampling schemes.  In such instances 
the computation of probability of event A  reduces to a combinatorial counting problem.  We 
therefore consider some rules of counting. 
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Rule 1: Given a collection of 1n  elements 211 12 1 1,, ,.... n na a a  elements 21 22 2 2, ,.... ,na a a and 

so on, up to kn elements 1 2, ,.... ,
kk k kna a a  it is possible to form 1 2, ..... kn n n ordered k-tuples 

 1 21 j 2 j  , ,....
kk ja a a   containing one element of each kind, 1 i ij n , 1,2,....i k . 

 Rule 2 is concerned with ordered samples.  Consider a set of n elements 1 2, ..... na a a .  Any 

ordered arrangement  1 2, ....., iri ia a a  of  r of these n  symbols is called ordered sample of 

size  r .  If elements are selected one by one, there are two possibilities: 

 

1. Sampling with replacement:  In this case repetitions are permitted, and we can draw 
sample of an arbitrary size. Clearly, there rn  sample size r . 

 2. Samping without replacement: In these case an element once chosen is not replaced, so 
that there can be no repetitions.  Clearly the sample size cannot be exceed n , the size of 
population.  There are    1 ....... 1 ,Pn rn n n r    say, possible samples of size r .  Clearly, 

0Pn r   for integers r n . If r n , then Pn r  = !n  

Remark 1:  We frequently use the term random sample in this book to describe the equal 
assignment of probability to all possible samples in sampling from a finite population.  Thus , 
when we speak of a  random sample of size r from a population of a n  elements , it means 

that in sampling with replacement, each  of rn  sample has the same probability 
1

rn
 or that in 

sampling without replacement, each of  Pn r  samples is assigned probability 
1

n rP
. 

Rule 3:  There are 
 

!
! !

n

r

n
r n r

 
 

  
 different subpopulations of size  r n  from a 

population of n elements, where    

Rule 4:  Consider a population of  n  elements.  The number of ways in which the population 
can be partition into k subpopulation of size 1 2, .... kr r r , respectively 1 2 .... kr r r n    ,  

0 ,ir n    is given by            

                      
1 2 1 2

!

, ...., ! !.... !k k

n n

r r r r r r

 
 

 
 

 The numbers define in above are known as multinomial coefficients. 

Example 3: In a game of bridge the probability that a hand of 13 cards contains 2 spades, 7 
hearts, 3 diamonds, and 1 club is  
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13 13 13 13

2 7 3 1

52

13

    
    
    

 
 
 

 

Example 4: An urn contains 5 red, 3 green, 2 blue, and 4 white balls. A sample of size 8 is 
selected at random without replacement.  The probability that the sample contains 2 red,        
2 green, 1 blue, and 3 white balls is 

                            

5 3 2 4

2 2 1 3

14

8

    
    
    

 
 
   

3.5  GEOMETRIC PROBABILITY: 

         Geometrical approach to the calculation of probabilities is employed when the sample 
space    includes an uncountable set of elementary event  and none of them is more likely 
to occur than the other.  Suppose as in the sample space    is a domain in a plane and the 
elementary events  are points within .  If an event A  is represented by the event A  
within , so that all    belonging to the region A  is are favorable to the event A , than 
probability of A is 

                        of subdomain 

 of domain 

area A
p A

area



                                                                            (1)                                                  

  In general,  Probability of event  AS
A

S

                                                                              (2)                         

Where AS  and S are measures of the specified part of the region representing the event A  

and the sample space Ω reprehensively.  The measure may length, area, volume etc.  
According as region is in one, two, and three,...dimensions. 

Formula (1) is a generalization of classical to an uncountable set of elementary events.  The 
symmetry of the experimental conditions with respect to the elementary outcomes   is 
usually formulated by the assumption of randomness. 

    The theory of geometric probabilities is often criticized for arbitrariness is determining the 
probability of events.  Many authors point out that for an infinite number of outcomes the 
probability cannot determined objectively i.e. independently of the mode of computation. 

Example 1:  A straight line of unit length say, (0, 1) is divided into three intervals by 
choosing two points at random.  What is the probability that the three line segments form a 
triangle ?  

Let ,x y  be the abscissas of any two points chosen on (0,1).  A set of necessary and sufficient 
conditions for the three segments to form a triangle is that the sum of the other two.  Hence 
we should have either  
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1

0 1
2

x y           and   
1

2
y x   

            (Or)      
1

0 1
2

y x        and   
1

2
x y   

This is represented by the shaded area in the figure.  Hence the probability is 1
4 . 

Example 2: Buffon’s needle problem. A plane is ruled with paralled straight line at distance 
L from each other.  A needle of length l L  is thrown at random on the plane.  Find the 
probability that it will hit one of the lines. 

    We characterize the outcome of the experiment by two numbers: the abscissa x  of the 
centre of the needle with respect to the left and by the angle   the needle makes with the 
direction of the lines.  Since the needle is thrown at random all values of x  and   are 
equiprobable.  Without any loss of generality we consider only the possibilities of the needle 

hitting the nearest line on the left when  0
2

L
x   and  0

2

    (The probability is same 

for hitting the nearest line on the right).  The sample space Ω is thus a rectangle of 

area
4

L
S


  .            The needle will be hit the line if 

2

l
x  sin .   We are thus interested in 

the event sin
2

l
A x    

 
.   Area AS  of

π

2

0

 sin  d
2

l
A    .                                                                                                   

Hence    
2

2 2 length of the needle

circumference of a circle of radius 
A

L

S l
p A

LS 

    . 

    [This is an interesting problem, perhaps, because it suggests a relation between a pure 
chance experiment and a famous number .  If we take a graph paper ruled by parallel line 1 
inch apart and a length 1 inch and keep track of the fraction of the times the needle crosses a 
line, when thrown randomly on the graph paper, π may be estimated as about 2/(proportion of 
crosses).] 

Example 3: If a chord is selected at random on fixed circle what is the probability that its 
length exceeds the radius of the circle? 

        Depending on the manner how the term ‘random’ is explained, we have three different 
answers.  Let the radius of the circle be . 

(a) Assume that the distance of the chord from the centre of the circle is a random value 
within 0 to .  A regular hexagon abcdef of side  can be inscribed in the circle.  Any 
chord lying within this polygon will have length gather than .  Hence the required 

probability =  , h  being the distance of ab from O .  Now
3

2
h r .  Hence 

probability
3

0.866
2

  . 

(b) Assume that the midpoint of the chord is evenly distributed over the interior of the 
circle.  The chord is longer than the radius when the midpoint of the chord is within  
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of the centre.  Thus all points in the circle of the radius  with  as centre can within  

of the centre serve as the mid-point of the chord.  Hence probability 
2

2

3

4

h

r




  . 

(c)  Assume that the chord is determined by two points chosen so that their positions are 
independently evenly distributed over the circumference of the circle.  Assuming that 
the first point falls at a , the second point must fall on the arc fab for the chord to the 

shorter then radius.  The length of fab =  of the circumference.  

   Hence probability = . 

 
3.6  CONCLUSION: 

The study of probability theory, particularly in the context of statistical independence, the 
Borel-Cantelli Lemma, probability on finite sample spaces, and geometric probability, 
provides a deep understanding of how events occur and interact in different settings. 

(i) Statistical Independence of Events: Understanding independence is crucial for 
modeling real-world phenomena where events occur without influencing each other. 
It is a fundamental concept in probability, helping in simplifying complex probability 
computations. 

(ii) Borel-Cantelli Lemma: This lemma plays a significant role in understanding whether 
a sequence of events will happen infinitely often. It is widely used in probability 
theory and applications like number theory, statistical physics, and stochastic 
processes. 

(iii) Probability on Finite Sample Spaces: Finite sample spaces provide a basis for 
understanding probability computations in controlled environments. The difference 
between sampling with replacement and sampling without replacement affects the 
probability distribution of outcomes and is important in statistics and machine 
learning. 

(iv) Geometric Probability: The application of probability to geometric settings allows 
for analyzing spatial randomness, such as random points, lines, and shapes in a given 
space. Problems like Buffon’s needle or random chord distributions provide insight 
into real-world stochastic processes. 

3.7  SELF ASSESSMENT QUESTIONS: 
 

1. Define statistical independence of two events and provide an example. 
2. What is geometric probability? Provide an example where it is applied. 
3. Prove that if two events are independent, their complements are also independent. 
4. Explain the second Borel-Cantelli Lemma and describe a situation where it applies. 
5. Consider a scenario where a fair die is rolled five times. Compute the probability of 

getting at least one six:    
a) If rolls are independent (with replacement). 
b) If rolls are dependent (without replacement in a different context, e.g., drawing  
numbered balls). 

6. Explain the application of geometric probability in physics and engineering. Provide 
examples such as random scattering of particles or fiber alignment in composite 
materials. 
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gupta, the World Press Private Limited, Calcutta. 
4) The Theory of Probability by B.V. Gnedenko, MIR Publishers, Moscow. 

5) Discrete distributions -N.L. Johnson and S. Kotz, John wiley & Sons. 

6) ContinuousUnivariatedistributions,vol.1&2N.L.JohnsonandS.Kotz,JohnWiley&Sons. 
7) Mathematical Statistics-Parimal Mukopadhyay, New Central Book Agency (P) Ltd., 
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LESSON -4 

RANDOM VARIABLES 
 
OBJECTIVES:  
 
After studying this unit, you should be able to:  
  To understanding the Random Variable  
  To know the concept of Structure and Random Variable  
  To acquire knowledge about significance of Random Variable 
  To understand the purpose and objectives of pivotal provisions of the Random Variable  
 
STRUCTURE: 
 
 

4.1 Introduction 

4.2 Random Variable  

4.2.1 Probability distribution of a random variable 

4.3 Distribution function 

      4.3.1 Discrete random variable 

      4.3.2 Continuous random variable 

4.4 Vector of random variables  

4.5 Statistical independence  

4.6 Joint and marginal distribution 

4.7 Conclusion  

4.8 Self Assessment Questions 

4.9 Further Readings 

 
4.1. INTRODUCTION: 

 

In LESSON-I we dealt essentially with random experiment that can be described by 
finite sample spaces. We studied the assignment and computation of probabilities of events. 
In practice, one observes a function defined on the space of outcomes. Thus, if a coin is 
tossed n times, one is not interested in knowing which of the 2n n-tuples in the sample space 
has occurred.  Rather, one would like to know the number of heads in n tosses. In games of 
chance, one is interested in the net gain or loss of a certain player. Actually, in lesson -I we 
were concerned with such functions without defining the term random variable. Here we 
study the notion of a random variable and examine some of its properties. 

 In LESSON -I we studied properties of a set function P  defined on a sample space 
 ,S . Since P  is a set function, it is not very easy to handle; we cannot perform arithmetic 
or algebraic operations on sets. Moreover, in practice one frequently observes some function 
of elementary events. When a coin is tossed repeatedly, which replication resulted in heads is 
not of much interest. Rather, one is interested in the number of heads, and consequently, the 
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number of tails, which appear in, say, n tossings of the coin. It is therefore desirable to 
introduce a point function on the sample space. We can then use our knowledge of calculus 
or real analysis to study properties of  P  . 

4.2 RANDOM VARIABLE: 

Definition: Let   , S  be a sample space. A finite, single-valued function that maps   into  
R  is called a random variable (RV) if the inverse images under X of all Borel sets in R  are 
events, that is, if  

         1 :    for all X B X B B     BS .                                                    (1) 

To verify whether a real- valued function on  , S  is an RV, it is not necessary to check that 
(1) holds for all Borel sets  BB  . It suffices to verify (1) for any class   of subsets of  R  
that generates B .  By taking   to be the class of semi-closed intervals ( , ],  x x R . We 
get the following result. 

  Result:  X is a random variable  ,{ : ( ) }x X x   R    { }X x S                             (2) 

Remarks: 

1.  Note that the notion of probability does not enter into the definition of an  R.V. 
2. If X is an RV, the sets { }X x  ,  { }, ,{ },a X b X x a X b      

{ },a X b  { }a X b  are all events. Moreover, we could have used any of these 
intervals to define an RV. For example, we could have used the following equivalent 
definition: X is an RV if and only if  

    { : ( ) }    X x x     S  

           We have  1

1
{ }

n

X x X x
n





     
 

   and 1

1
{ }

n

X x X x
n





     
 

   

3. In practice, (1)  or (2) is a technical condition in the definition of an RV which the 
reader may ignore and think of RVs simply as real-valued functions defined on Ω. It 
should be emphasized, though, that there do exist subsets of R  that do not belong to 
B , and hence there exist real-valued functions defined on Ω that are not RVs, but the 
reader will not encounter them in practical applications.  

4. If X is a random variable, the sets { },{ }X x a X b    { },{ },{ }Xx a X b a X b      are 
all events. 

5. In practice, a random variable is simply a real valued function defined on a Sample 
Space Ω . 

Example:   Let { , , , }HH TT HT TH   and S be the class of all subsets of Ω.  Define X by 
( )X     number of H’s in ω.  

Then ( ) 2, ( ) ( ) 1,X HH X HT X TH    and ( ) 0X TT   .  Then   
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1

, 0
{ },0 1

( , ]
{ , , },1 2

, 2

x
TT x

X x
TT TH HH x

x












  

 
     

Then X is a random variable. 

For example 1( ,1.5) { , , }X TT TH HT   . 

Some more Examples: 

1. Let X be the number of tails in the tosses of a coin. What is Ω? What are the values 
that X assigns to points of Ω? What are the events 

          { 2.75},{0.5 1.72}X X      

2. A die is tossed two times. Let X be the sum of face values on the tosses and Y be the 
absolute value of the differences in the face values. What is Ω? What values do X and 
Y assign to points of Ω? Check to see whether Xand Y are random variables. 

3. A die is rolled 5 times. Let X be the sum of face values. write the sets {x=4},{x=6}, 
{x=30}, and {x≥29}. 

4.2.1 Probability distribution of a random variable: 

For understanding the concept of a random variable, in practice, we define it only on a 

sample space  , S . However, random variables are of interest only when they are defined 

on a probability space. Let  , , P S  be a probability space and let X be a random variable 
defined on it. 

Theorem: The R.V. X defined on the probability space  , , P S  induces a probability space  

)Q(R, B, by means of the correspondence 

1( ) { ( )} { / ( ) }Q B P X B P x B        for all BB  we write Q= 1PX 
   and call Q or 1PX 

 
as the probability distribution of  X. 

Proof:  Clearly, ( ) { / ( ) } 0Q B P X B      for all  BB  .  

    Also  ( ) { / ( ) } ( ) 1P X P      Q R R  

Let  iB B  , i=1,2,… with  ,i jB B i j   .i.e. 'B s are disjoints. 

Since, the inverse image of a disjoint union of Borel sets is the disjoint union of these inverse 
images, we have. 

   
     1 1 1

1 1 1 1 1
i i i i i

i i i i i

B P X B P X B PX B B
    

  

    

               
      
    Q Q

                 

                       
i.e.  additivity of probability is proved.    Thus, it follows )Q(R, B,  is a probability space.  
Hence the proof. 
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4.3 DISTRIBUTION FUNCTION: 

Distribution function: A real valued function F defined on   ,  that is non-decreasing, 
right continuous and satisfies  

  0F    and   1F     

is called a distribution function (DF). 

Alternative definition:     Let ‘X’ be a random variable on  , , P S . Then the function 

                       ( ) ( ) { : ( ) },F x P X x P X x x          

is called the distribution function of a random variable  X. 

Properties of Distribution Function:- 

   We now proceed to derive a number of properties common  

      to all distribution functions. 

  Property 1:- 

                         If F is the distribution function of the random variable X and if                                         

       a b , then 

                               ( )P a X b F b F a     

  Proof:-  The events ‘ a X b  ’ and ‘ X a ’ are disjoint and their 

          union is the event ‘ X b ’. Hence by addition theorem of probability 

                         ( ) ( ) ( )P a X b P X a P X b       

   ( ) ( ) ( )P a X b P X b P X a F b F a         

  Corollary 1:-  

                    ( ) {( ) }P a X b P X a a X b        ( )P X a P a X b      

                                                                                               (Using additive theorem of p) 

                                            ( ) [ ]P X a F b F a             

               Similarly, we get 

                ( ) ( )P a X b P a X b P X b        

                                           F b F a P X b     

                    P a X b P a X b P X a        

                                             F b F a P X b P X a       

Remark: when   0P X a   and   0P X b   all four 

events , ,a X b a X b a X b       and a X b   have the same Probability 

   F b F a . 
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Property 2:-  

                        If F is the distribution function of one –dimensional random variable X, then          

  1.   0 1F x   

  2.    F x F y  if  x<y 

In other words, all distribution functions are monotonically non-decreasing and lie between 0 
and 1. 

 Proof: -   Using the axioms of certainty and non- negativity for the probability function P, 
part (1) follows triviality from the definition of  F x . 

 For part (2), we have for   x y , 

                 0F y F x P x X y        F y F x     F x F y   when  x y  

Property 3:        If F is distribution function of one- dimensional random variable x, then 

                         lim 0
x

F F x


      and                   lim 1
x

F F x


    

Proof: -    let us express the whole sample space S as a countable union of disjoint events as 
follows: 

  S    
1 0

1 1
n n

n X n n X n
 

 

   
            
   
   

     
1 0

1 1
n n

P S P n X n P n X n
 

 

                (P is additive)                   

      
1

1 lim 1
a

a
n

F n F n




                                                         

       
1 0

1 lim 1 lim 1
a b

a b
n n

F n F n F n F n
 

 

                 

                lim 0 lim 1 0
a b

F F a F b F
 

             

                       0 0F F F F             

          1 F F     

Since    , F F      . Also 

                0F    And   1F    

                  0 1F F                                                                                                (2)  

 1 and 2 give   0F    and   1F    

REMARKS:- 

      1.  Discontinuous of F(x) are at most countable 

      2.      
0

0 lim , 0
h

F a F a P a h X a h


        
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                0F a F a P X a     

        And         
0

0 lim 0, 0
h

F a F a P a X a h h


         

                                        0F a F a  
 

Theorem: The function F defined by     P ω Ω X ω , RF x x x      is indeed a DF. 

Proof: Let 1 2,x x ,  then we have,    1 2, ,x x     

          1 2, ,P x P x      

          1 2P ω Ω X ω P ω Ω X ωx x        

        1 2P PX x X x       

        1 2F x F x                                               (1)  

Thus F is non-decreasing function.  

In order to show F is right continuous, we consider sequences of numbers. 

 nx x   i.e; 1 2 ... ...nx x x x        

 Let    1/ ,k kA X x x                                                          (2) 

Thus  ,   sample spacekA S  and   kA  is non-increasing. Since, none of the intervals  1, kx x  

contains x, 

We have, 

1

lim k k
k

k

A A 





                            (3) 

Taking probability on both sides we have 

   lim 0k
k

P A P 


    

lim ( ) 0   (From the continuity property of    )                                                        (4)kk
P A P


 

    
 But,      

     
           

       

( ) / ,

/ , / ,

                                                                                   (5)

k k

k

k k

P A P X x x

P X x P X x

P X x P X x F x F x

 

   

  

       

     

 

Using (4) and (5), we get,     lim 0k
k

F x F x


     

       lim k
k

F x F x


    

    F   is right continuous. 

Finally, Let   nx  be a sequence of numbers decreasing to    . 
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Then   

                         

       

   

1 1 1

1

, ,

               lim

n n n n n n

n n
n

n

x x X x X x n X x X x n

X x X x 

  






          

        

Taking probability on both sides, we get     lim 0n
n

P X x P 


     

But,          lim lim limn n n
n n n

P X x P X x F x F
  

        

             0F P            

Similarly, we can prove,    lim 1n
n

F P X x


      

Thus, F is non-decreasing, right continuous,    0F    and   1F     

  F is indeed a DF. 

Theorem: The distribution function F of RV X is non-decreasing, continuous on the right 
with   0F    and   1F    . Conversely, every function F, with the above properties is 

the distribution function of a RV on some probability space. 

Proof:          Same as the above 

Distribution function  

Let X be a real random variable on the probability space  , ,S P  . For x R  , define, 

i.    ,P X x F x     

ii.   ,P a b P a x b         ,F b F a b a       

This  F x  is called the distribution function (d.f.) or cumulative distribution of X. 

4.3.1 Discrete random variable:  

Definition 1:  A random variable X defined on  , ,S P  is said to be of discrete type, or 

simply discrete if there exists a countable set   1P X E  . The points of E that have positive 
mass are called ‘jump points’ or points of increase of the distribution function of X, and their 
probabilities are called jumps of the distribution function. 

Definition 2: The collection of numbers  ip  satisfying     / 0,i iP X x p i       and 

1

1i
i

p




   . is called the probability mass function (p.m.f) of random variable X. 

The distribution function F of X is given by    

                       
    i

ix x
F x P X x p


   

  

A Result: Let  ip  be a collection of non-negative real numbers such that 1
1k

k
p




   . Then 

 kp  is the p.m.f. of some RV X. 
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Examples: 

1. 0

1,
k

k

e

k





      e e 
      

Solution 

k

k

e
p

k

 
 

   is the p.m.f. of Poisson distribution. 

2. 
0

1,x

x

pq




      1
1p q

         

  2

0

. 1 ...x

x

pq p q q




          

              1
1 1

1

p p
p q

q p

    


     

Solution { }, 0,1,2,...xpq x    is the p.m.f. of geometric distribution. 

3.  
0

1
n

nx n x

x

n
p q p q

x




 
   

 
     

Solution x n xn
p q

x
   

  
   

  is the p.m.f. of Binomial distribution. 

 

4.3.2 Continuous random variable:  

Let X be a random variable defined on  , ,S P  with distribution function F. Then X is said 
to be continuous, if F is absolutely continuous, that is if there exists a non-negative function 
 f x  such that  

                                         
  ( ) , .F x f t dt x R





       

The function f  is called the probability density function (p.d.f.). 

Result 1: Every non-negative real function f  that is integrable on R and satisfying 

             
( ) 1f x dx





  

is the p.d.f. of some continuous random variable X. 

 Result 2:                  .d
F x f x

dx
F x     

Define the distribution function of two dimensional R.V's show that the necessary and 
sufficient conditions for it to be the distribution function of a two dimensional random 
variable. 

Let X be a r.v defined on  , ,S P  defined a function  F .  on R namely 

          xx ,QF   

              RωXΩωP  xx  

Now the function F is called the D.F of r.v "X" 

i. F is non decreasing and right continuous with respect to both arguments. 
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ii.     0,Fy,F  x  and   1,F   

iii. For every   1 21 2
, ,y yx x  with 

1 2x x  and 
1 2

y y  the inequality (2) 

       1 2 1 12 1 1 2
, , , , 0F F F Fy y y yx x x x     holds  

i. Proof: For xx   

        xxxx  XXX  

Taking probability on both sides, we get, 

     xxxx  XPXPXP  

      0XPFF  xxxx  

    0FF  xx  

   xx FF   

i.e., F is monotonically non-decreasing in x )1(  

Consider   xxn
  

  φX  xn
x  

   P X P 0nx x       

   F F 0nx x    as nx x  

  This is true for every sequence  nx . F is continuous from right 

Define  n ; n 1, 2...nA X    

Then 
1n nA A   and    1

nA X X R       

Then     1 as nnP A P      

Hence,   (3)1F   

Define  ; n 1, 2,..nB X n     

Now 
1n nB B   and 

  nB X      

Then   (4)0F   

Thus from (1) to (4) the define F of a random variable X is non-decreasing continuous on R 
and   0F   and   1F   

ii.   Denote by nA , y the measurable set  yYn,X   

When n is a positive integer. For fixed y, the sequence  y,An
 is a contracting sequence 

whose limit is φ  it follows that  
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        lim , lim , lim , 0n nF n y P A y P A y P       i.e.,   0y,F   

In similarly way, we have   0F x  

Consider the set  ,nA X n Y n        for positive integer n. Now  nA  is an 

expanding sequence of measurable sets whose limit is   

Hence        lim , lim lim 1n nF n h P A P A P      i.e.,   1,F   

iii. Note that          2 , , , , ,D F x y F x h y k F x y k F x h y F x y         

                

 
   

   
, ,

     , ,

P X x h Y y k P X x Y y k

P X x h Y y P X x Y y

                

              
     

Also note that the probability for the rectangle   , ,X Y x X x h y Y y k       which 
necessary belongs to 2  equal the expression on the right hand side  

Hence        2 2 2 1 1 1 2 1, , , , 0F x y F x y F x y F x y     holds. 

4.4 RANDOM VECTOR:  

 

            The vector 1 2( , ,..., )
~ nX X X X  defined on  , ,S P  into nR  by  

1

2

( )

( )

   .
( )

~    .

   .

( )n

X

X

X

X




 



 
 
 
 

   
 
 
 
  

. 

Is called an n-dimensional random variable (or) a random vector of size n. If the inverse 
image of every n-dimensional interval. 

 1 2( , ,... ) / a ; , 2,...,n iI x x x x x R i ni i      is also n,                                                                                         

S  i.e., if     1
1( ) { / ( ) } ,X I X a S a Ri i       . 

Distributions function of a Random vector:  

The function ()F  is defined of 

( , ,..., ) ( , ,..., ) ( , ,..., )1 2 1 1 2 2 1 2
nF X X X P X X X x X x X x x Rn n n n      is known as a 

distribution function of random vector. 
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4.5 INDEPENDENT RANDOM VARIABLES: 

 

We Recall that the joint distribution of a multiple random variable uniquely determines the 
marginal distribution of the component random variables but in general knowledge of 
marginal distribution is not enough to determine the joint distribution.   Indeed it is quite 
possible to have an infinite collection of joint densities  f with given marginal densities. 

Definition-1:-we say that X and Y are independent if and only if 

i.      1 2, x yF x y F F  for all  ,x y  2  

Lemma:-If X and Y are independent and a<c b<d are real numbers then
 

ii.   ,P a X c b Y d P a X c P b Y d          

Theorem-1:- 

A necessary and sufficient condition for RV’s X,Y of the discrete type to be independent 
is that 

     ,i j i jP X x Y y P X x P Y y      for all pairs  ,i jx y  

Proof:- 

Let X,Y be independent. Then from Lemma 1 letting a c and b d  we get 

    ,P X c Y d P X c P Y d      

Conversely    , ,i i
B

F x y P X x Y y    

Where   , : ,i ii j
B i j x yyx    

Then      , i i
B

F x y P X x P Y y    

=      
i j

i i
x y

P Y y P X x F x F y
x y 

 
   
 
 

   

 

Theorem-2:-Let X and Y be independent RV’s and f and g be Boreal-measurable functions. 
Then f(X) and f(Y) are also independent  

Proof:- 

          We have 

         1 1, , , ,P f x x g y y P X f x Y g y                                                                                                                                     

=      1 , ,P X f x P Y y     

             P f x x P g y y    

Note that a degenerate RV is independent of any RV 
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Example:-Let X and Y be jointly distributed with PDF 

                                                   
1

, 1, 1
, 4

0      otherwise

xy
x y

f x y
   



  

            Then X and Y are not independent since  
1

1
1

2
x xf    and  

2

1
1

2
y yf    are 

the marginal densities of X and Y respectively. However the RV’s 2X  and 2Y are 
independent. Indeed 

   
1 1

2 2

1 1 2
2

2 2, ,
U u

uU

P X u Y U f x y dxdy


      

                          
1 1

2 2

1 1
2 2

1
1

4

U u

U u

xy dx dy
 

 
  
 
 

   

                         
1 1

2 2u U  

                            2 2P X u P Y U    

Note that  2x  and  2Y  are independent where and are Boreal measurable functions. But 

X is not a Boreal measurable function of 2X . 

Defition-2:- A collection of jointly distributed RV’s 1 2, ,... nX X X  is said to be mutually (or) 

completely independent if and only if    
1

1 2, ,...,
n

i i
i

nF x x x xF


 for all   1 2, ,..., n
nx x x                                  

Where F is the joint DF of  1 2, , ... nX X X   and  1, 2,....iF i n  is the marginal DF of 

iX 1 2, ,... nX X X  are said to be pair wise independent if and  only if every pair of them are 

independent. 

          It is clear that an along of theorem 1 holds but we leave it to the reader to construct it. 

 

Example-:-In example 1 we cannot write            
 

       1 2 3 1 1 2 2 3 3, ,f x x x f x f x f x   

Except when 0  .It follows that 1 2 3,   X X and X  are not independent except when 0  . 

 Theorem-3:-If  1, 2,... nX X X  are independent every sub collection 1, 2,...i i ikX X X of  

1, 2,... nX X X is also independent. 

Remark-1:-It is quite possible for RV’s 1, 2,... nX X X  to be pair wise independent. Without 

being mutually independent let  , ,X Y Z  have the joint PMF defined 

by            13
, , , , 0,0,0 , 0,1,1 , 1,0,1 , 1,1,0

16
P X x Y y Z z if x y z    


      

         1
, , 0,0,1 , 0,1,0 , 1,0,0 , 1,1,1

16
if x y z   



Probability Theory and Distribution    4.13    Random Variables 

Clearly X,Y,Z are not independent (why?) we 

have
            

            

1
, , , 0,0 , 0,1 , 1,0 , 1,1

4
1

, , , 0,0 , 0,1 , 1,0 , 1,1
4

P X x Y y x y

P Y y Z z x y

   

   

                

                     

 

 

 

1 1
, , , , , , 0,0 , 0,1 , 1,0 , 1,1

4 4
1

, , , 0,0 , 0,1 , 1,0 , 1,1 0,0 , 0,1 , 1,0 , 1,1
4

1
, 0, 1

2
1

, 0, 1
2

1
, 0, 1

2

P X x Z z x z P X x Y y x y

P Y y Z z y z

P X x x x

P Y y y y

andP Z z z z

      

    

   

   

   

 

It follows X and Y and Z and X and Z are  pair wise independent. 

Definition-3:- A sequence nX  of RV’s is said to be independent if for n=2,3,4…the 

RV’s 1, 2,... nX X X are independent. 

Similarly one can speak of an independent family RV’s. 

Definition-4:-we say that RV’s X and Y are identically distributed if X and Y have the same 
DF that is  

   X XF x F x  for all x  

Where   X YF and F  are the DF’s of X and Y respectively. 

Definition-5:- We say that nX  is a sequence of independent identically distributed RV’s 

with common law L(X) if nX  is an independent sequence of RV’s and the distribution 

of nX , n(1,2,………,n) is the same as that of X. 

          According to definition 4 X and Y are identically distributed if and only if they have 
the same distribution. It does not follow that X=Y with probability 1. If   1P X Y  we say 

that X and Y are equivalent RV’s. All definition 4 says is that X and Y are identically 
distributed if and only if    P X A P Y A    for all A B  

Nothing is said about the equality of events    .P X A andP Y A     

Definition-6:-Two multiple RV’s  1 2, ,... mX X X  and  1 2, ,... nY Y Y  are said to be independent 

if      1 2 1 2 1 1 2 2 1 2, ,..., , , ,..., , ,..., , , ...,m n m nF x x x y y y F x x x F y y y for 

all  1 2 1 2 1 2, ,..., , , ,..., , , , ,m n m n
x x x y y y where F F F


  are the joint distribution functions of 

 1 2 1 2, ,..., , , ,...,m nx x x y y y      1 2 1 2 1 2 1 2, ,..., , , ,..., , , ,..., , ,...,m n m nx x x y y y X X X and Y Y Y  and 

respectively. 
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          Of course the independence of and does not imply the independence of 

components 1 2, ,..., mX X X  of X (or) components 1 2, ,..., nY Y Y  of Y. 

Theorem-4:-Let  1 2, ,..., mX x x x  and  1 2, ,..., nY Y Y  be independent RV’s. Then the 

component jX  of  1,2,...X j m  and the component kY  of(Y=1,2,….n) are independent 

RV’s. If h and g are Boreal-measurable functions h  1 2, ,..., mX X X  and g  1 2, ,..., nY Y Y  are 

independent. 

Remark-2:-It is possible that an RV may be independent of Y and also of Z but X may not be 
independent of the random vector(Y,Z). See the example in Remark 1. 

        Let 1 2, ,..., nX X X  be independent and identically distributed RV’s with common DF 

function. Then the DF G of ( 1 2, ,..., nX X X ) is 

Given by 

G ( 1 2, ,..., nX X X )=  
1

n

j
j

F x

  

We not for any of the n! permutations 

 1 2
, ,....

i i inx x x of( 1 2, ,..., nX X X ) d  1 2
, ,....

i i inx x x where X d Y means that X and Y are 

identically distributed. 

Definition-7:-the RV’s 1 2, ,..., nX X X  are said to be exchangeable if 

( 1 2, ,..., nX X X ) d   1 2
, ,....

i i inx x x   

For all n permutations (i1,i2,….in) of(1,2,…n). The RV’s in the sequence nX  are said to be 

exchangeable 1 2, ,..., nX X X  are exchangeable for each n. 

     Clearly if 1 2, ,..., nX X X  are exchangeable then iX  are identically distributed but not 

necessarily independent. 

Example-5:-Suppose that X,Y,Z have joint PDF 

   2
, , ,0 1,0 1,0 1

3
f x y z x y z x y z

        


 

                    o   ,otherwise 

Then X,Y,Z are exchangeable but not independent. 

Example- Let 1 2, ,..., nX X X  be IID RV’s. Let 
1

, 1, 2,....
n

jn
j

X ns


   

and , 1, 2,..... 1.n
k k

sY X k nn   
   

Then 1 2 1, ,..., nY Y Y   are exchangeable  

Theorem-5:-Let X,Y be exchangeable RV’s . Then X-Y has a symmetric distribution. 

   The proof is simple. 

Theorem-6:-for 0e   
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(a)    2 2
s eP e P XX     

(b)If 0a   such that   1P X a p    and   1P X a p     

then    sP X e P X a e   
 

4.6 JOINT AND MARGINAL DISTRIBUTION: 

 

The ideas and definitions used in the bivariate case can be readily extended to the 
multivariate. 

The joint distribution of the variables  1 2
, ,...,

n
X X X may be either in terms of the induced 

probability space say  1 2 pP P x ,x ,...,xR , B , P or in terms of their distribution function f, defined 

by 

  1 1 2 2 p1 2 p p
X x  ,X x , . . . ,  Xf (x ,x ,. . . ,x )  =  p { x }    

The distribution function has properties analogues to the properties 

For a bivariate distribution function conversely any function possessing these properties may 
be regarded as the distribution function of P jointly distributed random variable. 

Here one may think of 2 2p   marginal distributions, of which   1p are 

univariate   2p are bivariate…   1p p    are (p-1) variate. The marginal distribution 

function of any  m p  variables say 1 2 mX ,X ,...,X   will be obtained for Xi 

(i=m+1,m+2,...,p). ; This may be written as 
1, 2....... ,nX X XG and is defined by 

1 2 m 1 2 m
G(x ,x ,...,x )=F(x ,x ,...,x ,+  ,+ ,...,+  )  

 

4.7 CONCLUSION: 

The study of random variables and their associated distributions is fundamental to 
probability theory and statistics. These concepts provide the mathematical framework for 
analyzing uncertain outcomes in various applications. 

a) Random Variables and Probability Distributions: A random variable is a 
function that assigns numerical values to outcomes in a sample space. Its probability 
distribution describes how probabilities are assigned to different values, 
distinguishing between discrete and continuous cases. 

b) Distribution Function: The cumulative distribution function (CDF) describes the 
probability that a random variable takes on a value less than or equal to a given 
number. The nature of this function differs for discrete and continuous random 
variables. 
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c) Vector of Random Variables: When dealing with multiple random variables 
simultaneously, they are treated as a random vector, which is essential in 
multivariate statistics and applications like machine learning and economics. 

d) Statistical Independence: Understanding when multiple random variables are 
independent allows simplification in modeling joint distributions, particularly in 
probabilistic models and real-world applications. 

e) Joint and Marginal Distributions: The joint distribution describes how multiple 
random variables behave together, while marginal distributions consider individual 
random variables separately. These concepts are key to understanding dependence 
structures in probability models. 

4.8 SELF ASSESSMENT QUESTIONS: 

1. Define a random variable and give an example. 
2. What is the probability distribution of a random variable? Explain briefly. 
3. Differentiate between discrete and continuous random variables with examples. 
4. Define the cumulative distribution function (CDF) and state its properties. 
5. What is a random vector? Give an example of its application. 
6. Explain statistical independence of two random variables. 
7. Differentiate between joint and marginal distributions. 
8. Consider a discrete random variable X representing the number of heads in three 

tosses of a fair coin. Find its probability distribution. 
9. Define and derive the properties of the cumulative distribution function (CDF) for 

both discrete and continuous random variables. 

4.9 SUGGESTED READING BOOKS: 

1) Modern probability theory by B. R. Bhat, Wiley Eastern Limited. 

2) An introduction to probability theory and mathematical statistics by V. K. Rohatgi, 
John Wiley. 

3) An Outline of statistics theory-1, by A.M.GOON, M.K. Gupta and B. Das 
gupta, the World Press Private Limited, Calcutta. 

4) The Theory of Probability by B.V. Gnedenko, MIR Publishers, Moscow. 

5) Discrete distributions -N.L. Johnson and S. Kotz, John wiley & Sons. 

6) ContinuousUnivariatedistributions,vol.1&2N.L.JohnsonandS.Kotz,JohnWiley&Sons. 
7) Mathematical Statistics-Parimal Mukopadhyay, New Central Book Agency (P) Ltd., 

Calcutta. 

 

                                                                                      Dr. Syed Jilani 

 

 

 



LESSON -5 
CONDITIONAL DISTRIBUTION AND 

CHARACTERISTIC FUNCTION 
 

 
OBJECTIVES:  
 
After studying this unit, you should be able to:  

  To understanding the sets and classes of events 
  To know the concept of Structure and sets and classes of events 
  To acquire knowledge about significance of sets and classes of events 
  To understand the purpose and objectives of pivotal provisions of the sets and classes of  
    events 

 
STRUCTURE: 
 
 

5.1 Introduction 

5.2 Conditional Distribution  

5.3 Moments of conditional distribution  

5.4 Mathematical Expectation 

5.5  Conditional Expectation 

       5.5.1 Properties of conditional expectation 

5.6 Characteristic function 

 5.6.1 Properties of Characteristic function: 

 5.6.2 Moments 

5.7  Conclusion 

5.8  Self Assessment Questions 

5.9  Further Readings 

5.1 INTRODUCTION: 

In probability and statistics, a conditional distribution describes the probability distribution 
of a random variable given that another variable is known to have a certain value. It helps us 
understand how one variable behaves under specific conditions. 

5.2 CONDITIONAL DISTRIBUTION:  

For two-dimensional random variables ( x ,y ) .The joint distribution function xyF (x,y) for 

any real numbers x and y is given by 

x yF (x ,y )= p (X x , Y y)   
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The conditional distribution function FY/X(y/x) denotes the distribution function of y when x 
has already assumed the particular value x. 

Y/X
(y/x) = p(Y y/X=x) = P(A/X=x) p 

 

5.3 MOMENTS OF CONDITIONAL DISTRIBUTION: 
 

Let us consider, with no loss of generality, the conditional distribution of Y given .X x  
Since this is a univariable distribution, its moments are to be defined, in terms of either the 
distribution function  or the P.D.F (or P.M.F)  . We shall be particularly 
interested in the conditional mean and the conditional variance. 

The conditional mean, if it exists is 

 

And the conditional variance, if it exists, is 

 

              

       Where  

We have the following theorems: 

THEOREM 1: 

        If X and Y are independent, then  and  

Proof: 

     

             since  

                                                     

           Also, 

   , Where  

                from the first result 

                

THEOREM 2: 

          If    E Y X  exist for almost all values X (i,e.) for all values of X with positives 

probability or probability –densities then   

                                      E Y E Y X  

Proof: 
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     Where A is the set of all x with positive probability or positive probability – densities 

                                    

                                      xE E y x   

THEOREM-3: 

        If   and   exists for almost all values of   then  

                            

Proof: 

                   

                                    

          Also, 

                    

                   

                   

           Since 

                  

Thus  

              

                              

5.4 MATHEMATICAL EXPECTATION: 

 

 If ‘X’ is a discrete random variable which can assume any of the values , ,...,1 2x x xn  

with respective probabilities ( ); 1, 2,...,P P X x i ni i    then its mathematical 

expectation is defined as  

            
( ) , 1

1 1

n n
E X P x Pi i ii i

  
 

 

On the other hand if X can take any one of the values ; 1,2...,x ii  with respective 

probabilities Pi  then 

           
( ) ; 1

1 1
E X P x Pi i ii i

 
  
 

 

Provided the series is absolutely convergent i.e., provided
1 1
P x P xi i i ii i

 
   

 
. 
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If ‘X’ is a continuous random variable with probability density function ( )f xX  then 

         
( ) ( ) ( )E X Xf x dx xdF xX

 
  
 

 

Provided the integral is absolutely convergent in other words E(X) defined above exist 
only if 

       
( )x f x dx


 


. 

 

5.5 CONDITIONAL EXPECTATION: 
 

Definition: Let X and Y be random variables defined on a probability space (Ω,s,ρ) and let 
‘h’ be a borel measurable function. Then the conditional expectation of h(x) given Y written 
as E [h(x)/y], is a random variable that takes the values E[h(x)/y], defined as 

If (X, Y) is Discrete type: 

( ). (  / ) [ ( ) / ]  
x

h x P X x Y yE h x y     

 ( / )   (   ) / ( )  Where P X x Y y P X x Y y P Y y        

If (X,Y) is Continuous type: 

                                      E h x Y /= ( ) . ( , )x yh x f x y d x
 


  

 X /Y 2
2

f ( x ,y )
W h e r e  f ( x /y ) =  w i th  f ( y ) > 0

f ( y )
 

F(X,Y) is the joint probability density function of X and Y and f2(y) the marginal probability 
density function of Y. 

A similar definition may be given for the conditional expectation E[h(y)/x]. 

NOTE: Expectation of borel-measurable function of a random variable ‘x’ is always a 
constant. 

But, where as a generally conditional expectation E[h(x)/y] is not a constant but is a random 

variable. 

5.5.1 Properties of conditional expectation: 

1. E[c/y] = c, for any constant c. 

2.  1 1 2 2 1 1 2 2
E[(a g (x)+a g (x)/y]=a .E[g (x)/y]+a .E[g (x)/y]     

                   For any Borel-function g1and g2.                      

3. P(X 0) =1= E(X/Y)  0 

4. P(X1 X2) =1=E(x1/y)>E(x2/y) 
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5. If X and Y are independent random variables, then 

E[X/Y] = E(X) and E[Y/X] = E(Y) 
We also have, 
V(X/Y) = E(X2/Y)-[E(X/Y)]2 

 

               
     

1

2 00
0

( , ) ,

( ) ( , )

,

y

y y x x

x
y x

y
y yy y y y

x

f x y e o x y

f x f x y dy e dy e e e e

f y f x y dx e dx e dx e x ye




    

   

    

         

    

 

  
 

                  

2

0

0

2

0

2

( / ) ( , ) / ( )

/

/

1/

1/ / 2

1/ . / 2

/ 2

x

y y

x

y

y

y

E x y x f x y f y dx

e ye dx

x y dx

y xdx

y x

y y

y

 

  



















  

                  

   

 

1

/

/ , / ( )

/

1

1

1
( 1)

1
( ( 1)

1
           ( 1)

1

y

y x

x

y
x x

y y
x x

y
x x

x
x

x
x

E y x

E y x y f x y f x dy

y e e dy

y e dy
e

ye e
e

e y
e

e e x
e

e x
e
x



  

 


 











  

  

 
 

  







  

  

    

 

 






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5.6 CHARACTERISTIC FUNCTION:  

Definition: Characteristic function is defined as  

 ( ) itXt E eX   

          ( )  (for continuous probabilty distribution)itxe f x dx   

         
( ) (for discrete probability distribution)

x

itxe P x   

If ( )F xX  is the distribution function of a continuous random variable X, then  

        
( ) ( )itxt e F xX


 


. 

Obviously ( )t  is a complex valued function of real variable  ‘ t ‘  and it may be noted 
that                                                                         

      ( ) ( ) ( ) ( ) 1itX itX itxt E e E e e f x dx f x dxX        

            Since      
1 2

1 2 2 2cos  sintx cos sin 1itxe tx i tx tx     . 

Since ( ) 1tX   characteristic function ( )tX  always exists though ( )XM t  may not 

exist. This is the striking advantage of characteristic function over m.g.f. 

Another Definition: Let X be a random variable. Then the complex valued function  
defined on R by  

                ( ) cos sin cos sinitXt E e E tX i tX E tX iE tXX       

Where  is the imaginary unit is called as the characteristic function (CF) of the 
random variable X.  

On the discrete case CF is  

                            k k k
k

t = cost + isint P X =x x x    

And in the continuous case CF is   t = cost  ( ) sint  ( )x f x dx i x f x dx
 

 

   

Note: the study of characteristic function requires the knowledge of complex analysis in 
particular that of complex intersection. 

Note: CF is also called as the fourier transform of  F x
itx

e  is called the kernel of the 

transform. 

5.6.1 Some Simple Properties of Characteristic function:  

If ( )t  is the Characteristic function (CF) of general distribution function ( )F x  then  

1. (.) is continuous. 



Probability Theory and Distribution 5.7  Conditional distribution… 
 

2. ( ) (0) ( ) ( ) 1t F F       . 

3. ( ) ( )t t   . 

 where ( )t  is C.F. of a random variable X. Then the C.F. of a+bx is ( )itae bt . In particular 
(.) is  the C.F of –X (.)  is real X is symmetric about origin.                                                                                         

4. If ( )tn  is an C.F of random variable then ( )r tn n  is C.F of R.V’s  0rn  , 1rn  . 

 

Proof: 

1.  For every t' is neighbourhood of t, we have 

     ( ) ( )

                                                                 (    rv Z,  ( ) ( ))

it X itX it X itX it X itXt t E e E e E e e E e e

for any complex we have E Z E Z

           



 

        
( ) ( ) ( )t t f x dxti x itxe e 


   


                  

But         ' ' '' '1 0 as '1it x itx i t t x i t t xit x it xe t tee ee e  
                                    (1) 

Further,  
' ' '

1 1 2
it x itx it x itx it x itx

e e e e e e                                                             (2) 

                                
1 2 2 2 1 2since    cos  sintx (cos sin ) 1itxe tx i tx tx       

 

In view of (1) and (2), using dominated convergence theorem, we see that   

                 ' 0 as ' 0t t t t    
   

    ( )  is continoust  

Hence the proof. 

 

2.     For any C.F.     ( )tX , we have                                                                  

     
   ( ) ( )itX itX itxt E e E e e f x dxX





     

    But, we have    
1 2 2 2 1 2cos  sintx (cos sin ) 1itxe tx i tx tx     . 

  ( ) ( ) 1                                                                      (1)Therefore t f x dxX




 
 

    

0Also we have    (0) ( ) ( ) ( ) ( ) 1                   (2)e f x dx f x dx F F
 

       
 

   

                                    [ since,  we have  ( ) ( ) ( )
b

a

f x dx F b F a   ]          
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  Thus, from (1) and (2), we have  ( ) (0) 1t     

   which implies that ( )t  is bounded by (0) 1  . 

 

3.  We have     

      ( )X
itXt E e     cos( ) sin( )E tX i tX    (cos sin )E tX i tX   

                   (cos )  (sin )E tX i E tX   ( )X t  

             Thus ( ) ( )X Xt t   . 

 

4.  CF of  is    

     

In particular, if we take a=0  and b=-1,  then the ch. function of 

 is given as 

   

Thus if   is Ch. Fn. of , then  is Ch. Fn. if  

If  is symmetric about origin then  and  will have the same distribution function as 
explained below 

 

 

 

Where  and  are respectively the DFs of   and . 

Thus,   and  will have the same DF and have the same Ch. function therefore 

 

 

  

 is the imaginary part varnishes. 

           Thus  is real  

Conversely if    , then X and –X will have the same CHF and hence the same DF 

(since the CHF determines uniquely the DF) thus  is symmetric. 
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The moment problem: We have seen that moments may not exists, but a characteristic 

function will always exist. However, if moments of all order exist, then moments can 

determine the characteristic function. If the series 
'

!0

rer
rr





 converges for a certain P>0. 

This will be so it 
!

nV en
n n
  is convergent. 

5.6.2 Characteristic Functions and Moments: 

   Derivatives of the characteristics function  t : 

We have by definition,  t =    itxt E e         and    00 E e  =1                               (1) 

We also know that  t  is continuous and the derivative of   at t=0 is given by 

 

       

   

0 0

0 0 0

E e 10
0 lim    = lim              (from(1))

h

e 1 e 1 e 1
          = lim  E   = lim     = lim                   (2)

                            

ihX

h h

ihX ihX ihX

h h h

h

h

f x dx f x dx
h h h

 


 

 

  
 


 

       
     
     

 
                           By dominated convergence theorem

 

 

But we have, 

   

     

2 3

2 32

0

1 ...
2 3

1 1
..... lim                                                   3

2 3 h

ihx

ihx ihx

ihx ihx
e ihx

h ix h ixe e
ix ix

h h

    

 
      

 

Upon using equation (3) in equation (2) we get, 

         10 .   =   =     sayix f x dx i xf x dx i E X i 
 

 

   
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Thus, if   exist and is finite at the origin, then the first moment of X i.e.  E X exists and is 

finite.                                

                                                            

       

 

   

       
  

0 0

0 0

0

1

e
lim      = lim  

e 1 e 1
           = lim    = lim . .  

.   1
!

            from 2

         

i t h x itx

h h

ihx ihx
itx itx

h h

r
r itx

r
r

t h t e
t ix f x dx

h h

ix e f x dx ix e f x dx
h h

it
t x f x dx e

r

 


 



 

 





     
  

 
    
   
   

  

 



 

  

    

     

0

1

1 1
    lim                                                                  (4)

0  =    

 

ihx ihx

h

r r r r r
r

e e
x ix

h h

i x f x dx i E X i 



 
 



 
 

Theorem:  If the thr  absolute moment of a random variable X is finite, then the characteristic 
function  t is differentiable ‘ r ’ times and 

                  r itxr
t ix e f x dx                                                                                        (1)

 

Where   f x  is pdf of X and t is any real number. 

Proof:     we have given rth absolute moment id finite. 

              
r

x f x dx                                                                                                   (2)
 

The first ordered derivation of  t  is given by 

                      

     

 

 

 

 

0

0

0

0

lim  

e
           = lim  

e 1
           = lim    

e 1
           = lim                                         

h

i t h x itx

h

ihx
itx

h

ihx
itx

h

t h t
t

h

e
f x dx

h

e f x dx
h

e f x dx
h

 












 
 

 
 
 

 
 
 
 
 
 






                        (3)

 


0

lim
h

  can be taken under the integral sign by dominated convergence theorem because, 

 1itx ihxe e
x

h





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But we have, 
0

lim
h

 1ihxe
ix

h


                                                                                            (4)  

Upon using (4) in (3), we get  

               . itxt ix e f x dx    

Similarly, we have 

               

     

 

 

 

 

0

0

0

0

lim  

e
           = lim  

e 1
           = lim    

e 1
           = lim . .  

h

i t h x itx

h

ihx
itx

h

ihx
itx

h

t h t
t

h

e
ix f x dx

h

ix e f x dx
h

ix e f x dx
h

 












  
 

 
 
 
 
 
 

 
 
 







 

Upon using (4) in (5), we get  

                                     2 itxt ix e f x dx    

Continuing by induction, the rth derivative of  t is given by 

                                       itxrr t ix e f x dx    

But we have, 

                                     r itxr
t ix e f x dx    

                                         .   1
r itxx f x dx e    

                                             from 2   

Therefore, all moments of up to order  ’ r ’ would be finite. 

Note:  From equation (1) we have, 

                                 

   
 

1   

0

          =  

           

r r r

r

r
r

i x f x dx

i E X

i










 

Note:  The moments may not exist, but a characteristic function will always exit.  However, 
if moments of all order exist, then moments can be determined using the characteristic 
function as given below 

                                      
0

1

!

r

r
r

it
t

r
 





         
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1.7  CONCLUSION: 

The study of conditional distributions, expectation, and characteristic functions provides 
fundamental tools for understanding probability and statistics. These concepts allow us to 
analyze dependencies between random variables, derive important statistical properties, and 
characterize probability distributions effectively. 

a) Conditional Distribution: This describes the probability distribution of a random 
variable given that another variable has taken a specific value. It is crucial in Bayesian 
inference and decision theory. 

b) Moments of Conditional Distribution: Moments (such as mean and variance) of a 
conditional distribution provide insights into the expected behavior of a random 
variable given certain conditions. 

c) Mathematical Expectation: Expectation (or expected value) is a measure of the 
central tendency of a random variable. It is used extensively in probability theory, 
economics, and finance. 

d) Conditional Expectation: The expected value of a random variable given another 
variable captures dependencies and is widely used in stochastic processes and 
statistical modeling. 

e) Characteristic Function: This function provides a powerful way to describe the 
distribution of a random variable. It is especially useful in proving limit theorems and 
deriving moments. 

f) Properties and Moments of the Characteristic Function: The characteristic 
function uniquely determines the distribution of a random variable, and its derivatives 
help compute moments such as mean and variance. 

1.8  SELF ASSESSMENT QUESTIONS: 
 

1   Define conditional distribution and explain its significance. 
2. Derive the formula for the conditional expectation E(X | Y = y). 
3. State and explain the properties of conditional expectation. 
4. Define the characteristic function of a random variable and list its properties. 
5. How can the moments of a random variable be obtained from its characteristic function? 
6. Prove the law of iterated expectation. 
7. Explain the relationship between independence and conditional expectation 

1.9 SUGGESTED READINGS: 
 

1) Modern probability theory by B. R. Bhat, Wiley Eastern Limited. 

2) An introduction to probability theory and mathematical statistics by V. K. Rohatgi, 
John Wiley. 

3) An Outline of statistics theory-1, by A.M.GOON, M.K. Gupta and B. Das 
gupta, the World Press Private Limited, Calcutta. 

4) The Theory of Probability by B.V. Gnedenko, MIR Publishers, Moscow. 

5) Discrete distributions -N.L. Johnson and S. Kotz, John wiley & Sons. 
6) ContinuousUnivariatedistributions,vol.1&2N.L.JohnsonandS.Kotz,JohnWiley&Sons. 
7) Mathematical Statistics-Parimal Mukopadhyay, New Central Book Agency (P) Ltd., 

Calcutta. 

                            Dr. Syed Jilani  
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MOMENT’S INEQUALITIES 
 
OBJECTIVES:  
 
After studying this unit, you should be able to:  
  To understanding the moment’s inequalities 
  To know the concept of Structure and moment’s inequalities 
  To acquire knowledge about significance of moment’s inequalities 
  To understand the purpose and objectives of pivotal provisions of the moment’s   
    inequalities 
 
STRUCTURE: 
 
6.1    Inversion Theorem 

6.2    Chebyshev’s Inequality  

6.3    Jensen’s inequality  

6.4    Cauchy-Schwartz inequality 

6.5    Minkowski Inequality 

6.6    Markov’s inequality 

6.7    Schwartz inequality 

6.8    Kolmogorov’s Inequality 

6.9 Hajek-renyi inequality  

6.10 Conclusion 

6.11 Self Assessment Questions 

6.12 Further Readings 
 

6.1 INVERSION THEOREM: 

 Statement:       Let  x t  is the characteristic function of     and ,F t a h a h   is 

continuity interval of  tF then      1 sinh
lim

T
ita

X
T

T

t
t dt

t
F a h F a h e






       

so that if there are two distribution functions, they agree at all continuity points and therefore 
both are identical. 

Proof: To show that 

            dtt
t

t
haFhaF

X

ita
T

T
T e 




 

sinh1
lim   

      R.H.S: 



Centre for Distance Education  6.2  Acharya Nagarjuna University 

       Let    dtdxxF
t

t
J ee

itxita
T

T









 









sinh1


 

Where  xF is p.d.f of X . x  is continuous   

   1 sinhT
it x a

T

t
J F x dx dt

t e




 

 
   

 
    

   1 sinhT
it x a

T

t
J F x dt dx

t e




 

 
   

 
   

consider the inner integral  

 
dt

t

t
e

axit
T

T






sinh
let  

   sinh
cos sin

T

T

t
x a t i x a t dt

t
          

   sinh cos sinh sinT T

T T

t x a t t x a t
dt i dt

t t 

 
    

   

  [since cosx  is  even function cos(-x)=cosx,sinx is odd function sin(-x)=-sinx] 

 
0

sinh cos
   2 0

T t x a t
dt

t


   

 

[since 
- 0

sin  dx =0, cosx dx =2 cos  dx x x
  

 
   ] 

       
0 0

sin sin
      2sin cos sin A B sin

T Th x a t h x a t
dt dt

t t

   
               

   
0 0

sin sin
lim  
T

x h a t h x a t
dt dt

t t

 



   
      

Since from the standard integral of improper integrals. 

         

0h if 
2

               

0h if 0               

0h if 
2

sinh

0











dt

t

t

 

Using the above results we have.  
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 

     

 

     

 

0

lim  if ,

        0 for all other values of  

sin sin1
lim

1
lim

lim

lim

lim

T

T
o

T

a h a h

T
a h a h

a h

T
a h

T

x a h a h

x

x h a t h x a t
J F x dt dt dx

t t

J F x dx

J F x dx F x dx F x dx

J F x dx










  









  


  






    



   
 

 

   

 



 
 
 

  



  


   J F a h F a h


   

 

         L.H.S=R.H.S 

6.2 CHEBYSHEV’S INEQUALITY: 

Statement: If X is any random variable, then   2

1
| |P X k

k
     where   E X  and  

 2 var X  and 0k   

Proof: Chebychev’s inequality is also a special case of basic inequality. Therefore, first we 
have to state and prove the basic  inequality .  

in basic inequality, if we take 

        2 2 2  .h x X and k      

We get Cheybychev inequality and is given by 

 
     2

2 2 2
2 2

.   
.

E X
P X k

k


 




      2

1
P X k

k
         

    22 E X V X     

 Hence the proof. 

Chebychev’s  inequality as a special case of Markov inequality. 

Statement: If X is a random variable with mean  E X  and    2V X  , then for any  k 

>0, we will have  

                     2

1
P X k

k
   

   
          Or            

2

1X
P k

k




  
  

 
 

Proof:  This can be deduced from Markov inequality. Therefore, first we have to prove 
Markov theorem, then we have to deduce.  Chebychev inequality as a special case of Markov 
inequality. 
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From Markov inequality, we have 

 
| |

| |
r

r

E Y
P Y c

c

      where 0c   and 0r   

In the above Markov inequality, take    2,  =X-  and c=k  where k>0 so   that c>0r Y    

Then we get     
                  

 
 2

2 2

E X
P X k

k


 



      

But, we have       2 2
2

1
   E X P X k

k
                 Or  

2

1
P X k

k
        

Convex function : 

Let   f x  be a real valued Borel function defined on an interval. 

 finite or infiniteI R  

Now, the function f is said to be convex if for every pair of points  ,  'x x of I . 

   ''

2 2

f x f xx x
f

   
 

 

 If f is twice- differentiable on I , convexity is equivalent to  '' 0f x   on I  

A continuous function is always continuous. 

An alternative definition of convex function is that, for every 0x I , there corresponds a 

number  0x such that for all x I . 

                            0 0 0x x x f x f x     

The LHS may be interpreted as the tangent through 0x , if it exists. The above equation 

implies that all the points of the curve  f x  are above this tangent line. For example 
 r

X is 

the a convex function of x . 
 

6.3  JENSEN’S INEQUALITY:  
 

Statement: If X  is a random variable with finite mean ( ) and f(x)E X  is a convex function 

then show that   E f(X) f[ ( )]E X . 

Proof: Let X  be a random variable whose value lie in I R . Since f(x) is a convex function, 
it immediately follows. 
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0 0 0( )( ) ( ) ( )x x x f x f x     

Where 0 0 and ( )x I x  is a number which corresponds to 0x .Take 0x =E(X) in the above 

equation (x). Then we get, 

( ( )) [x-E(X)] ( ) ( ( ))E X f x f E X   .   

Taking expectation on both sides, we get  

( ( )) [E(X)-E(X)] [ ( )] ( ( ))E X E f X f E X    

[ ( )] ( ( )) 0E f X f E X   .                                       [ ( ) ( ) 0]E X E X   

[ ( )] ( ( ))E f X f E X  

    Hence the   proof. 

6.4 CAUCHY-SCHWARTZ INEQUALITY. 
 

State and prove Holder’s inequality hence obtain Cauchy-Schwartz  inequality. 

Holder’s Inequality :      r
1/ r 1/

. 
S

s
E XY E X E Y   

   
                                                (1) 

Where r 1  and  
1 1

1
r s
  . 

 Proof:  Consider  
r

( ) ; 0
r

sp p
p p

s



    

             ( )p  is minimum at 1p   with (1) =1.  That is 1;  for any 0( ) (1) pp     

Let  p = 0p =
1/

1/r

sa
b

 with 0; 0a b   

Now, 
r / /

0 r / r / r

1 1( ) . .
r

s s s

s

a ap
sb b




   

                       
r / / r

1 1r (1). .  1=
s sa bs

b a
                                                                       (2)  

                        
1 1r / / r1 1r 1

s s
a b

ab
s

  


 

                 
(r )/ (r )/r1 1r

s s s
a b abs

                                                                          (3) 

 But we have 

1 1
1

r s
  

r 1
r
s
s
                                                                                                                (4) 

Upon using  (4) and (3), we get  
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                       1 r 1r sba abs             
r

 
r

sa b ab
s

   

     Putting     
1/ r 1/r

;      ss

X Y
a b

E X E Y

 
 
   
   

 

 We get ;  
       1/ r 1/

r

r r

1 1
. .

r s

s

s s

X Y X Y

sE X E Y E X E Y

   
 

   
   

 

                                                                 
   

   1/ r 1/r ss

X Y

E X E Y

 

   
   

 

Taking expectation on both sides 

                       
 
 

 
 

 
   1/ r 1/

r

r r

1 1
. .

r s

s

s s

E X E Y E XY

sE X E Y E X E Y
 

   
   

 

               
 

   1/ r 1/r

1 1

r ss

E XY

s E X E Y
  

   
   

 

                        
1/ r 1/r ss

E XY E X E Y   
   

       
1 1

1
r s

   
 
  

                        Hence, the theorem.           

6.5 MINKOWSKI INEQUALITY: 
 

Statement: For 1r   

       r
1/ r 1/ r 1/ r

r r
X YX YE E E           

Proof:  

r r 1
. EX Y X Y X YE

  
      

    

                      r 1 r 1
E E Y.   X YX X Y

 
  

                                                                 (1)
 

But from Holder’s inequality, we have 

         r 1 r 1

E X E X X YX Y
 

   
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                       1 1
r s r 1

/ r /

E EX X Y
s


         

But, we have 1
s

1

r

1
  so that 

1r

r
s


  

    r
11/ r

r
X

(1 )r 1
X Y E X X YE r

E


                                                                        
(2) 

Similarly, 

    r
11/ r

r
(1 )r 1

X Y E X YE r
Y EY


                                                                           (3) 

Substituting (2) & (3) in (1) we get, 

                  r rr rr

11 (1 )1/ (1 ) 1

E X Y E E X YEX YX Y
r rr r

E


           

 

          

 
  

   1

r

r r

r
1

1 1

( )
   

E X Y
E EX Y

E X Y
r

r r
 








        

         

 
 

   r r

r
1/ r 1/ r

X Y
rr

 
1/ r

E X Y
E EX Y

E X YE

 










     
  

 

        
   r 1/ r

r r
1/ r 1/ r

E E EX YX Y  
  

    
         

          Hence, the Minkowski Inequality 

                   

6.6 MARKOV’S INEQUALITY: 

STATEMENT: If X is any random variable, then    r
r

E
P X K

X

K
    where r>0 and k>0. 

Proof: let 'S' be the subset of real line,  i.e., RS  

         Let us define, 

         S R / k , where k 0x x     

Suppose  xf  is the p.d.f. of random variable X   

 Consider kx   

        r , where r 0
r

kx    
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           rf f
r

x xkx                        0f  x  

           
s

rf dx f dx (1)
r

s

x xkX     

But, we have 

        

   

   
R S

r r

r r

E

s

f d

             f dx f d

x x

x x x

X x

x x









 



   

               Since  
r

R S

f d 0x xx


 , we have 

        

   

 
 

s

S

r r

r

r

E f d

E
f d (2)

X k x x

X
x x

k



  



  

   But we have  S R/ kx x    

 Therefore,  

 
   

 
S

f d P R/ k

               P X k (3)

x x x x  

  


  

Thus from (2) and (3) we have  

           r
r

E
P X

X
k

k
 

            (or)           r
rP X k

X
E

k
 

 

Hence the proof. 

Note:   Markov’s inequality may also be stated as        r
r

E
P X

X
k

k
 

 

Markov’s inequality as a special case of basic inequality. 

Statement: let  h x  be a non-negative Borel measurable function of a random variable X. 

Now ,if   E h x exits, then for  0  , 

                                         E h x
p h x 


   

Proof:  let S be a subset of real line i.e., S R  

Let us define   /S x R h x     
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Suppose  f x is the pdf of X. Now, consider  h x   

        
     

.    0

.  
SS

h x f x f x f x

h x f x dx f x dx





  

  


                                                                                   (1) 

But by definition, we have  

      E h X h x f x dx




           =   
S R S
h x f x dx h x f x dx


                                     (2) 

   sin    0 and 0ce h x f x  ,  

we have      . 0
R S

h x f x dx


                                                                                            (3) 

From (2) and (3), we have      

       .
S

E h x h x f x dx 
   

            (using (1))
S

f x dx                                                   (4)    

But we have   /S x R h x     

Therefore,  

    /
S

f x dx P x R h x         P h x                                                                       (5) 

Thus, from (4) and (5), we may write
   

     E h x P h x  
 

     E h x
P h x 


    

      Hence, the proof. 

Deducing  Markov’s inequality : 

Let   r
h x X and rk  ,  where 0 and k>0r   in the above inequality, we get 

                     rr r
r

E X
P X k

k
 

        
i.e                r

r

E X
P X k

k
   

6.7   SCHWARTZ INEQUALITY: 

Putting 2r s   in holder’s inequality we get  

     2 2
E XY E X E Y

    
       (or)        2 2E XY E EX Y                                   (1) 
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Note: For any two random variables we have                             

   E XY E XY                                                                                                                  (2) 

From (1) and (2) we have   

     2 2E XY E EX Y  

 Replacing X  by  X E X and Y by  Y E Y in the above Schwartz inequality, we get  

       
        2 2

. E X E X Y E Y E X E X E Y E Y              

                       i.e.,         cov ,X Y V X V Y                                                                   (3) 

The correction coefficient between X and Y  is defined as  

 
   XY 

cov ,
  r =

X Y

V X V Y
 

From equation (3), we may observe this 

                          XY r 1  

6.8 KOLMOGOROV’S INEQUALITY: 
 

Statement:  Let X1,X2,...,Xn  be independent RVs with common mean 0 and variance 2
k ,  

k=1,2,…,n, respectively.  Then for any  >0,     

  2 2

1
1 1

max | | ,     where 
n k

k i k i
k n

i

P S S X  
 



                         

Proof:  Let  

   

   
 
 

1 2
1

1 2

1 2

max | | = max , ,...,

                               = |S | ,|S | ,..., | |  

                               = |S | |S | ... | | ,     1,2,...,

k j k
j k

k

k

A S S S S

S

S k n

 

  

  

 
     

  

     

                                (1)                           

          

 
 

1 21 1

1 1

|S | |S | . . . | | | |    

     | |  

k k k

k k k

A S S

A A S

   


 

 

     

  

   

 
 

           1 k kA A         Ak       

    kIf    is the complement of  ,  then it is obviously   A   and k kA A   
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              11 2|S | |S | ... | |  = | |  kk k k kA S A S S                    

 1since k kA A      

   Denote 0    and     

         
   

 
1 1 1

1 1

 = |S | ,...,| | | |

     = |S | ,...,| | ,| |

k k k k k

k k

B A A S S

S S

  

  
 



    

  


 

In particular 

   
 
 

1 0 1 1 1

2 1 2 1 2

3 2 3 1 2 3

|S | |S |

|S | | |

|S | | | | |

B A A

B A A S

B A A S S

 

 

  

      

    

     



 

 

 So that kB ’s are disjoint, and it follows that 

     

   
   

     

1 2 1 1 2

1 1 1 2

1 2 1 2 2

|S | |S | | |

            = |S | > | | |S | | |

            = |S | | | |S | | | | |

B B S

S S

S S S

  

   

    

     

    

       





  

 

     
 

   
   

k 1
1

k-1 1 2 1 1

k 1 1

Now,  we have

   =      and      B

since |S | ,| | ,...,| |

       B   = | | | |  

n

n n k k k
k

k k

k k k k

S B A A

A S S S

S A S S



   

  




 

 

    

     

   



 

                       (2) 

 Let us denote 
kBI  as an indicator function of the event kB  defined as 

        
 

k
1 if 

            =0 if 

B k

k

I B

B

 



 


 

 Then 

     

  
    

22

2 2 2

( )

                =E 2      (since )

k k k

k k k k k

n B n k B k B

n k B k B k n k B B B

E S I E S S I S I

S S I S I S S S I I I

  

    
 

 Since  1 ...n k k nS S X X     and 
k

 k BS I  are independent, 

k 1 2 3 k n k

k+1 k n k

n k

since S depending on the set of variables x ,x ,x ,...,x  and  S -S  is depending 

on another set of variables x ,...,x , the varibales S  and  S -S  are mutually exclusive

 The variables s -s  and
n



       
k

n k k n k n k

 s  are independent 

cov((S -S ),S )=0 E S -S 0 E S -S 0    k n k k kS E S S E S S           
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 (since   0kE X   and hence  E 0kS    for all  ,k )
 
                                                                         

 Thus, we have 

  

        

 
k k kk

2

2 2 2

2 2 2
2

2 2 2

R B B BB

2 2 2 2

1 1

                        (3)

( )

                    = S 0 S ( )

( ) ( )

k k k k k

k k k

k n

k

k k k

n nB B B B Bk k k

B B B k k k

n n

n n nB kA
k

E S I E S S I E S I E S I E S I

S I S I S I P B

E S I E S I E S






 

    

     

 

    

 

 

  

2 2

1 1

( )         
k

n n

n Bk
k

E S I


                                                                                               (4)                                        

From Eqs. (3) & (4), we have 

   
 

n
2 2 2 2

1 1 1

B B ( )              (from eq(2))
n n

k k k nP P P    
    

 
                        (5)                             

From Eq.(1), we have           1
max | |n j

j n
A S 

 
   

        
1 1
max | | max | |n j k

j n k n
A S S 

   
                                                                                   (6)                                                                    

Substituting (6) in (5) we get  

   2 2 2 2

1 1
1 1

max | | max | |
n n

k k k k
k n k n

P S P S     
   

       

Hence the proof. 

Note:     Take n=1; then    
2
1

1 2
| |  ,    P X




  which is Chebychev’s inequality.   

 

6.9 HAJEK-RENYI INEQUALITY: 
 

Statement:  Let 1 2X ,X ,...  be independent random variables such that    0iE X  and  

 i iV X    . If  1 2, ,...C C i non-increasing sequence of positive constants, then for any 

positive integers   ,m n  with  m n and arbitrary  0,  

  2 2 2 2
1 2 2

1

1
max ...

m n

k k m i i i
i m

P C X X X C C 


 
        

   

Proof:   To prove the inequality, consider the Quantity 

 
1

2 2 2 2 2
1

n

k k k n n
k m

Y S C C C S





     

Where 1 2 ...k kS X X X    . It is easy to show that 
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  2 2 2 2

1 1

m n

m k k k
k k m

E Y C C 
  

     

Let   , 1,...,iE i m m n   be the event j jC S    for m j i   and i iC S  . the events 

iE , are mutually exclusive and     max
n

k k i
m k n

k m

P C S P E
 



    

Let oE  denote that event that j jC S for  m j n   . Then by the definition of condition 

expectation          
0 1

\ \
n n

i i i i
i i

E Y E Y E P E E Y E P E
 

    for ,k i    

      22 2
1 1| ... 2 ... |k i i i k i i k iE S E E S X X S X X E 

       
   

                          2
1| 2 ... |k i i i k iE S E E S X X E     

But the occurrence of the event iE  only imposes a retraction on the first i if the variables iX  

and the following variables, under this condition, remain independent of one another and of 

iS . Hence, for  , | 0,i j ij i E S X E  thus giving the inequality 

   2 2| | .k i i iE S E E S E When iE  is given |i iS C .But 

      
1

2 2 2 2 2
1\ | |

n

i k i k k n k i
k m

E Y E E S E C C C E S E





    

                       
1

2 2 2 2 2
1| |

n

k i k k n k i
k i

E S E C C C E S E





    

                    
2 1

2 2 2 2
12

n

k k n
k ii

C C C
C






  
    

 
   

And there    2 .
n

i
k m

E Y P E


   the required result follows from the exact expression derived 

for  E Y . 

Kolmogorov’s inequality of example 3.2 follows, as a special case choosing 

1 21, ... 1.nm C C C      

6.10 CONCLUSION: 

The study of probability inequalities and the inversion theorem plays a crucial role in 
probability theory, statistics, and mathematical analysis. These concepts provide essential 
tools for bounding probabilities, analyzing convergence, and solving optimization problems. 
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a) Inversion Theorem: This theorem allows us to uniquely recover a probability 
distribution from its characteristic function. It is particularly useful in proving limit 
theorems and studying the behavior of probability distributions. 

b) Chebyshev’s Inequality: A fundamental result that provides an upper bound on the 
probability of a random variable deviating significantly from its mean. It is widely 
used in statistics and probability theory for variance-based estimates. 

c) Jensen’s Inequality: A powerful inequality that relates convex functions to 
expectations, playing a key role in optimization, information theory, and machine 
learning. 

d) Cauchy-Schwarz Inequality: A fundamental result in linear algebra and probability, 
ensuring that the correlation between two random variables does not exceed the 
product of their standard deviations. 

e) Minkowski’s Inequality: An extension of the triangle inequality to spaces of random 
variables, useful in functional analysis and statistical applications. 

f) Markov’s Inequality: Provides a general bound on the probability that a non-
negative random variable exceeds a given value. It is used in proving other 
inequalities such as Chebyshev’s. 

g) Schwarz Inequality: A special case of the Cauchy-Schwarz inequality, applied in 
probability theory and linear algebra. 

h) Kolmogorov’s Inequality: Provides bounds on the probability of maximum 
deviations of sums of independent random variables, crucial in stochastic processes. 

i) Hajek-Rényi Inequality: A result in probability theory that provides bounds on the 
probability of deviations for sequences of independent random variables. 

6.11 SELF ASSESSMENT QUESTIONS: 
 

1) Prove Chebyshev’s inequality and explain how it is used in probability theory. 
2) Show that Jensen’s inequality holds for a convex function and a random variable. 
3) Prove the Cauchy-Schwarz inequality for random variables. 
4) Derive Minkowski’s inequality and explain its importance in probability and 

statistics. 
5) Explain how Kolmogorov’s inequality can be used in probability limit theorems. 
6) Discuss the applications of Hajek-Rényi inequality in probability theory. 
7) Explain the inversion theorem and prove how a characteristic function uniquely 

determines a probability distribution. 
 
6.12 SUGGESTED READINGS 
 

1. Modern probability theory by B. R. Bhat, Wiley Eastern Limited. 

2. An introduction to probability theory and mathematical statistics by V. K. Rohatgi, 
John Wiley. 

3. AnOutlineofstatisticstheory-1, by A.M.GOON, M.K. Gupta and B. Das gupta, 
the World Press Private Limited, Calcutta. 

4. The Theory of Probability by B.V. Gnedenko, MIR Publishers, Moscow. 

5. Discrete distributions -N.L. Johnson and S. Kotz, John wiley & Sons. 

6. ContinuousUnivariatedistributions,vol.1&2N.L.JohnsonandS.Kotz,JohnWiley&Sons. 
7. Mathematical Statistics-Parimal Mukopadhyay, New Central Book Agency (P) Ltd., 

Calcutta. 
  Dr. Syed Jilani  



LESSON -7 

CONVERGENCE OF SEQUENCE OF RANDOM 
VARIABLES 

 
OBJECTIVES :  
 
After studying this unit, you should be able to:  
  To understanding the convergence of sequence of random variables. 
  To know the concept of Structure and convergence of sequence of random variables. 
 To acquire knowledge about significance of convergence of sequence of random 

variables. 
  To understand the purpose and objectives of pivotal provisions of the convergence of 

sequence of random variables. 
 
STRUCTURE: 
 
7.1   Introduction 

7.2   Convergence in probability 

7.3   Convergence almost Surely 

7.4   Convergence in Law 

7.5   Convergence in the rth mean 

        7.5.1 Convergence in mean square or quadratic mean  

7.6   Relationship between convergence in probability and convergence in law: 

7.7   Relationship between almost surely convergent and convergent in probability: 

7.8   Relationship between mean square convergence and convergence in probability: 

7.9 Conclusion   

7.10  Self Assessment Questions   

7.11  Further Readings   

 
7.1. INTRODUCTION: 

 

In probability theory, the concept of convergence of random variables is crucial in 
understanding how sequences of random variables behave as they approach a limiting 
random variable. Different modes of convergence provide various ways to measure this 
behavior, each with different levels of strictness. 

 

7.2 CONVERGENCE IN PROBABILITY 

Let {Xn} be a sequence of Random variables defined on some probability space (Ω, S, 
P) we say that the sequence {Xn} converges in probability to the random variable ‘X’ if for 
every ε> 0, 



Centre for Distance Education 7.2 Acharya Nagarjuna University 

       

       { } 0    as     or   simply  lim { } 0
n

P X X n P X Xn n       


        

Equivalently, if for every ε > 0,   

              { } 1    as      i.e., lim { } 1
n

P X X n P X Xn n 


      
 

More elaborately, a sequence of RVs { }Xn   defined on some probability space (Ω, S, P) is 

said to converge in probability to a RV  X if for every  given 0 & 0,     a N such that     

                   { }   n N P X Xn        

We denote convergence of { }nX  in probability to X   as   .  
P

X Xn  OR   Plim X Xn                  

We may also say that  { }nX  is said to convergence stochastically to X.   

Remark :    This concept plays an important role in statistics.  Consistency of estimators and 
weak law of large numbers are instances of this concept. Intuitively, it means that the 
difference between Xn   &  X is likely to be small with large probability for large ‘n’. 
 

7.3 .CONVERGENCE ALMOST SURELY: 
 

Let {Xn} be a sequence of random variables defined on some probability 
space (Ω, S, P) we say that the sequence {Xn} converges almost surely to a 
random variable ‘X’ if and only if, 

    
    
      

          lim 1     

 i.e.    lim 1   or simply lim 1      

P X Xnn

P X X P X Xn nn n

   

  

   

     
 

       This is denoted as   
.

lim  almost surely     or X
a s

X X Xn nn
   

Note : In this case, the set of convergence of {Xn} has unit probability. Thus, lim Xn  & X are 
equivalent random variables. 
 

7.4. CONVERGENCE IN LAW 
 

Let {Xn} be a sequence of random variables defined on some probability space (Ω, S, P) and 
{Fn} is the corresponding sequence of distribution functions. Now we say that the {Xn} 
convergence in law (distribution) to a random variable X (defined on the same probability 
space (Ω, S, P) ) if it exists with a distribution function F such that 

Fn(x)   F(x)   as   n   at every point ‘x’ at which F is continuous.  

We may also say that {Fn} convergence in law or weakly to F  
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and we write         Fn 
w
  F  or  Xn 

L
  X   

 

7.5 CONVERGENCE IN THE rth MEAN: 
 

A sequence of random variable {Xn} defined on some probability space (Ω, S, P) such 
that E(|Xn|

r) < ∞  for some r > 0, is said to be convergence in the rth mean to a RV X  if 

 r

nE X    and    0
r

nE X X   as n   we denote it as Xn 
Lr
  X 

Note :   When r=1, convergence in rth mean is called as convergence in mean. 

7.5.1. Convergence in mean square or quadratic mean  

A sequence of random variables {Xn} defined on some probability space (Ω, S, P) 
such that E(Xn

2) < ∞ is said to converge in mean square (quadratic mean) to a random 

variable ‘X’ if E(X2) < ∞ and E[(Xn-X)2]  0 as n  ∞. We denote it as 
2

n

L
X X . 

Thus convergence in mean square or quadratic mean is a special case of convergence in rth 

mean when r = 2. 

7.6 RELATIONSHIP BETWEEN CONVERGENCE IN PROBABILITY AND          
CONVERGENCE IN LAW: 

Statement: Convergence in probability   convergence in law.  i.e.,   X
P L

X X Xn n   . 

Proof:  

  Since, we have given convergence in probability, it immediately follows, for given >0  

                         lim 0P X Xnn
                                                                                  (1) 

 Let  x  be  a continuous  point of  F .   Then, for any arbitrary  >0, we have 

               X x X x X x X x X xn n n                     

Taking probability on both sides 

                  

     
   

( ) , ,

                                  ,

F x P X x P X x X x P X x X xn n n n

P X x P X x X xn

 

 

         

        

   But, we may write        

               
     

   
, , ,

                                or    

X x X x X x X x X x X xn n n

X X X X X Xn n n

  

  

             

        


                                 

Therefore, we have   
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       ( )F x P X x P X X F x P X Xn n n             

           (2)
 

Similarly, we can show that  

                  , ,F x P X x P X x X x P X x X xn n                

                                                             ( )F x P X Xn n    
                                         (3)

 

From (2) and (3), we have  

                        ( )F x P X X F x F x P X Xn n n              

Taking the limit n   we get 

                     lim ( )                     (from Eq. (1))F x F x F xnn
               

 

This holds for all  >0.  Take the limit as   0 and use the fact that F is continuous at x, 
and then we get 

                   lim ( )F x F xnn
  

Hence the proof. 

   Fix  >0.  Then, 

                                   P X c P X c P X cn n n           

                                                                 P X c P X cn n        

                                                                1F c F cn n       

                                                                  1F c F c       

                                                                0 1 1 0     

A useful Result:   . .a s
nX X     00

lim sup 0n n nn
P X X 

    for all 0.    

Proof: Since . .a s
nX X , . . 0,a s

nX X   and it will be sufficient to show the equivalence      

                 of       
. .

00

) 0           and    

b)   lim sup 0.

a s
n

n n nn

a X

P X 



 
  

Let us suppose that (a) holds. Let 0,   and write 

                 sup  and C= lim 0 .n m nnm n

A X X 


     
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Also write    C ,n nB A    and note that    1 ,n nB B    and the limit set 

 1 .n nB 
   It follows that   

                1lim 0.n n nPB P B
n

 
     

Since 1,  0,cPC PC   and we have 

            

     
 

 

1

1

.

c c
n n n

c c c c
n n

c c
n n

n

PB P A C P C A

PC PA P C A

PA P C A

PA

     

    

  



  

It  follows that (b) holds. 

Conversely, let   lim 0,n
n

PA 


  and write  

                
____

lim 0 .n
n

D X 


    
 

  

Since    nD A   for n=1,2,…, it follows that   0.PD    Also, 

                ____
c 1

C = lim 0 lim ,n n
n n

X X
k 

    
 

  

So that 

                
1

1
1 0,

k

PC PD
k





    
 

   

Hence the proof. 

7.7 RELATIONSHIP BETWEEN ALMOST SURELY CONVERGENT AND    
CONVERGENT IN PROBABILITY: 

Statement: Almost surely convergence    convergence in probability .    Symbolically, 

                       . . .a s P
n nX X X X    

That is if {Xn} be a sequence of RVs defined on some probability space (Ω, S, P)  converges 
almost surely  to the random variable ‘X’ (defined on the same (Ω, S, P) ), then  {Xn} 
converges to X in probability .   

  Proof:    

   We have the result,   
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             . .a s
nX X       00

lim sup 0n n nn
P X X 

    for all 0.      

Indeed, we can write equivalently  that for given 0, 0,      0 0  ,n n     such that      

             
00

sup        ( By def. of Supremum)n n
n nn n

P X X P X X   


 
       

 


     
 

                                   
0

1
n

n n

P X X  




    
 
 
 
     

    
0

0

C

n n
n n

n n

X X X X 


 

        

Clearly, 

     
0

n n
n n

X X X X 




       for  0.n n  

Then, it follows that for 0 ,n n       
0

1
n n

n n

P X X P X X  




      
 
 
 
   

                                                                                                            nP X X         

  which is the same as saying that .P
nX X  

Note: The above results implied Convergence in distribution is weaker than convergence in 

probability and hence Convergence almost Surely. 
 

7.8 RELATIONSHIP BETWEEN MEAN SQUARE CONVERGENCE AND        
CONVERGENCE IN PROBABILITY: 

Mean square convergence implies convergence in probability from “Morkove’s inequality”. 
We know that for any non-negative function h(x) of any positive real numbers   and then                                                 

[ ( )]
{ ( ) }

E h x
P h x 


   taking 2( ) ( )h X X cn   and E  as 2E  in equation  

                                   
2[ ]2 2{( ) }

2
E X cnP X cn 




     

Applying positive square root to the probability. We get, 

                                   
2[ ]

{( ) } lim
2

E X cnP X cn n





     
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By hypothesis Xn  converges to zero ( 0)Xn   in mean square i.e., 
2[ ]

lim 0
2

E X cn
n 


  

then obviously {( ) } 0P X cn    . 

Hence mean square convergence implies convergence in probability.     

7.9 CONCLUSION: 

The concept of convergence of random variables is fundamental in probability theory and 
statistical inference. Different modes of convergence describe how sequences of random 
variables behave as they approach a limit, which is crucial in areas like asymptotic analysis, 
statistical estimation, and stochastic processes. 

a) Convergence in Probability: A sequence of random variables converges in 
probability to a limit if the probability of large deviations decreases as the sample size 
increases. This is widely used in statistical estimation and the law of large 
numbers. 

b) Convergence Almost Surely: A stronger form of convergence where the sequence 
converges for almost all outcomes in the probability space. This is critical in 
stochastic processes and martingales. 

c) Convergence in Law (Distribution): This means that the distribution of a sequence 
of random variables approaches the distribution of a limiting variable. It is commonly 
used in proving central limit theorems. 

d) Convergence in rth Mean: A sequence converges in rth mean if the expected value of 
the absolute difference between the random variables and the limit, raised to the 
power r, tends to zero. It is useful in mean-based estimations. 
 Mean Square (Quadratic Mean) Convergence: A special case where r=2, 

meaning that the expected squared difference between the sequence and the limit 
tends to zero. It is important in regression analysis and stochastic modeling. 

e) Relationships Between Different Modes of Convergence: 
 Convergence Almost Surely vs. Convergence in Probability: Almost sure 

convergence implies convergence in probability, but the converse is not 
necessarily true. 

 Mean Square Convergence vs. Convergence in Probability: Mean square 
convergence implies convergence in probability, but the reverse is true only under 
additional conditions. 

 Convergence in Probability vs. Convergence in Law: Convergence in 
probability implies convergence in law, but not vice versa. 

7.10 SELF ASSESSMENT QUESTIONS: 

1) Prove that almost sure convergence implies convergence in probability. 
2) Explain how convergence in probability implies convergence in law, but not vice 

versa. 
3) Show that convergence in mean square implies convergence in probability. 
4) Provide an example where convergence in probability does not imply almost sure 

convergence. 
5) Compare and contrast different types of convergence in probability theory. 



Centre for Distance Education 7.8 Acharya Nagarjuna University 

6) Given a sequence of random variables Xn converging to X in mean square, prove that 
it also converges in probability. 

7) Explain how the different modes of convergence are used in real-world applications, 
such as statistical inference or machine learning. 

7.11  SUGGESTED READING BOOKS: 

1. Modern probability theory by B. R. Bhat, Wiley EasternLimited. 
2. An introduction to probability theory and mathematical statistics by V. K. Rohatgi, 

John Wiley. 
3. AnOutlineofstatisticstheory-1, by A.M.GOON, M.K. Gupta and B. Das gupta, 

the World Press Private Limited, Calcutta. 
4. The Theory of Probability by B.V. Gnedenko, MIR Publishers, Moscow. 
5. Discrete distributions -N.L. Johnson and S. Kotz, John wiley & Sons. 
6. ContinuousUnivariatedistributions,vol.1&2N.L.JohnsonandS.Kotz,JohnWiley&Sons. 
7. Mathematical Statistics-Parimal Mukopadhyay, New Central Book Agency (P) Ltd., 

Calcutta. 

                                                                                      Dr. Syed Jilani 

 

 

 

 

 

 

 

 

 

 

 



LESSON -8 

WEAK LAW OF LARGE NUMBERS AND 
STRONG LAW OF LARGE NUMBERS 

 
OBJECTIVES:  
 
After studying this unit, you should be able to:  
   To understanding the Weak law of large numbers and Strong law of large numbers 
  To know the concept of Structure and Weak law of large numbers and Strong law of large 

numbers 
  To acquire knowledge about significance of Weak law of large numbers and Strong law of 

large numbers 
  To understand the purpose and objectives of pivotal provisions of the Weak law of large 

numbers and Strong law of large numbers 
 
STRUCTURE 
 

8.1   Introduction 

8.2   Weak law of large numbers  

8.3   Necessary and Sufficient Condition of W.L.L.N 

8.4   Chebychev’s W.L.L.N 

8.5   Khinchin’s weak law of large numbers 

8.6   Strong law of large numbers 

8.7   Kolmogorov SLLN for i.i.d case 

8.6   Conclusion 

8.7   Self Assessment Questions 

8.8   Further Readings 

 
8.1  INTRODUCTION: 

The Law of Large Numbers (LLN) is a fundamental theorem in probability theory 
that explains how the average of a sequence of independent and identically distributed (i.i.d.) 
random variables behaves as the sample size increases. It states that, under certain conditions, 
the sample average converges to the expected value of the underlying distribution. 

There are two main versions of the LLN: 

1. Weak Law of Large Numbers (WLLN) – Ensures convergence in probability. 
2. Strong Law of Large Numbers (SLLN) – Ensures almost sure convergence. 

Both versions express the same idea: as the number of observations increases, the sample 
mean becomes a more accurate estimate of the population mean. However, they differ in the 
strength of their convergence guarantees. 
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8.2 WEAK LAW OF LARGE NUMBERS: 

        Let  nX  be a sequence of RVs.   Write
1

, 1,2...
n

n k
k

S X k


  .   In this section we may 

answer the following question in the affirmative:    

Do there exist sequence of constants n and B >0,B  as nn n   ,  such that the sequence 

of RVs  1
n n nB S A    converges in probability to 0  as n  ? 

Def1:  Let  nX  be a sequence of RVs and 
1

      ,   1,2...
n

n k
k

S X n


   we say that  nX  obeys the 

weak law of large numbers(WLLN) with respect to the sequence of constants 

 ,nB 0, ,n nB B     if there exists a sequence of real constants  such thatnA    

                   1 0      as P
n n nB S A n        

Here, n ’s are called as centering constants and nB ’s  are as norming constants. 

Def2:   Let  nX  be a sequence of RVs with   .n nE X a   The arithmetic means of  nX  

and  na  are 
n

i
i=1

1
  X    nX n

  and    
n

i
i=1

1
     na a

n
   

 Now,   if  0  ,p
n nX a      then we say that  n then X  obeys WLLN.

 
 

8.3  NECESSARY AND SUFFICIENT CONDITION OF W.L.L.N: 
 

Theorem 1: 

Statement: Let  nX  be any sequence of R.V's write 1

1

n

n k
k

Y n X



  . A necessary and 

sufficient condition for the sequence  nX  to satisfy the weak law of large numbers is that  

2

2
0   as  n

1 n

Y
E

Y

 
  

                                                                                                     

 

Proof:  

Necessary condition: 

Here We have given      

2 2

2 2
0   as  n   i.e. lim  0                                                  (1)   

1 1n n

Y Y
E E

nY Y

   
         

 

For any two positive numbers  , ,  0a b a b  , we have 
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1 b
 1                                                                                                             (2)

1 b

a

a




                                   
 

   Let      A εY         then     2 2ω A 0n nY Y        

Taking  2 2   and  =na Y b   in  Eq. (2),  then we get   

             
2 2 2 2

2 2 2 2

1
  1

1 1 1n n

Y Y

Y Y

 
 


  
  

 

  Thus, we may write 

                   
    

2 2
2 2

2 2
A ε

1 1n
n

Y
Y Y

Y
    


 
              

Taking probability on both sides we get        
2 2

2 2
P A P

1 1n

Y

Y




 
  

    

But, we have from Markov’s inequality, 

                         
2 2 2 2

2 22 2
P

1 11 1 nn

Y Y
E

YY

 


     
            

                                                  (3) 

          Now, from Eq. (1),  it immediately follows      

      
2 2

2 2
lim P 0

1 1n

Y
n Y




 
     

 
2

P
2

0  as n
1 n

Y

Y
  


P 0  as nnY        (4)

 

Hence, the necessary condition 

Sufficient condition: 

For proving the sufficient condition, we have given the sequence  nX  is satisfying the weak 

law of large numbers.   That is we have given 

                P 0  as n  a given >0, lim P ε 0n nY for Y
n

        
                        (5)

 

We will prove (4) for the case in which 
nY  is of the continuous type.  If 

nY  has p.d.f.  ynf , 

then  
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 

   

   

2 2

2 2

2 2

2 2

2 2

2 2

y ε y ε

y ε y ε

y dy
1 1

                y dy y dy
1 1

                y dy y dy                since 1
1 1

n
n

n n

n n

Y y
E f

Y y

y y
f f

y y

y y
f f

y y





 

 

 
   

 
 

 
     



 

   

                               
2

2
y ε

y dy
1n n

y
P Y f

y




  
  

                          

   

   

2 2 2

2 2 2
y ε

2

2
y ε

ε ε
P ε y dy             since  

1 ε 1 1 ε

ε
P ε                                       since 1  and  y dy 1 

1 ε

n n

n n

y
Y f

y

Y f





 
       

 
    
  



  

Taking lim
n  on both sides and using Eq. (5),   

we get       
2

2
lim 0

1 n

Y
E

n Y

 
   

 

  Hence the sufficient condition 

Remark:  Since the above theorem (theorem1) applies not to the individual variables but to 
their sum, it is of limited use.  However, all weak laws of large numbers obtained as 
corollaries of the following theorem. 

Theorem 2: 

       Statement:  let nX  be a sequence of pair wise uncorrelated RVs with    and i iE X   

  2var ,  1,2...i iX i  .
n

2

i=1

   If   i as n   , we can choose 
1

A
n

n k
k




  and 

2

1

,
n

n i
i

B 


  that is, 

                    

n
i

2i=1

1

X
      0       pi

n

i
i

as n






 


 

Proof:   We have, by Chebychev’s inequality, 
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 

2

2 1

2 22 21 1

11

1
| | =  0 as n . 

n

i in n
i

n k i nn
k i

ii
ii

E X

P S


  

  



 



          
  
 
 


 


 

Note1: if the 'nX s  are identically distributed and pairwise uncorrelated with 

 i iE X    2 and var iX   
  

we can choose An n  2and .nB n  

Note2:in the above theorem we can choose nB n  provided that 2

1

-2 n 0
n

i
i





     

as  .n   

Note3: in note 1 we can take       An n  and ,nB n since
2

2
0

n

n


  as  .n  thus if  nX  

are pairwise-uncorrelated identically distributed RVs with finite variance,       S / .p
n n   

Example: 

Let  1 2, ,... nX X X  be jointly normal with   20, 1i iE X E X     for all I and 

 cov ,i jX X   if 1j i   , and =0 otherwise, then 
1

n

n k
k

S X


  is  20,N    where 

    2 var 2 1nS n n       

 
 
 

 

2

2

2

2

22 2
2

2 2 2 2 2
0

2

2
2 2

0

2 2
2

0

2
 

1 2

2 12
 

2 12

2 1 2
0   as    n

2

x

n

n n

y

y

SY x
E E e dx

Y n S n x

y n n
e dy

n y n n

n n
y e dy

n













 

 

   
         

   
    

 
  







  

 It follows from Theorem 1 that   1 0.P
nn S    

 

8.4 CHEBYCHEV’S WLLN: 
 

Theorem-3:  Let  nX  be a sequence of pair-wise independent RVs with the following 

additional hypothesis 

2

( )  ( )

( )  ( )  1,2...,     where ' '  is a positive real number.

n n

n n

i E X

ii V X c n c





  

   
 

 Then  nX  obeys WLLN   centered on .n  
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Proof:   Denote   
n

i
i=1

1
  X    nX n

  and   
n

i
i=1

1
     n n

    

Now, by applying Chebychev’s inequality to the RV nX , then we get 

 

  

   

2

2 2 2
1 1

2 2
2 2 2 2 2

1

( )
    | |

1 1 1
| | =     (since 's are pair-wise independent)

1
                                   =             (since 

n n

i i i
i i

n

i i
i

n
n n

n n

V X
P X E X

P X V X V X X
n n

nc c

n n n




 
 

 
  

 



  

        
  

 

 



  2

)

| |n n

c

c
P X

n
 





   

 

   Taking limit on both sides, we get 

   
 

2 2

1
lim | | lim lim | | lim

                                               lim | | 0     

                                               0

n n n n

n

p

n n n n

n n

n n

c c
P X P X

n n

P X

X

   
 

 



   



      

   

  

   

Thus  nX  obeys WLLN’s centered on .n  

Hence, the proof. 

 

8.5 KHINCHIN’S WEAK LAW OF LARGE NUMBERS: 
 

Statement:-Let , , ...1 2x x be a sequence of i.i.d variables. Then ( )E Xi   exists and is finite 
p

Xn   

Proof:-   be the common finite expectation of all 'X sn  

( ) .E X nn   

All 'X sn have the common characteristic function ( )tX  

2
2( ) 1 ( ) ( ) ( )

2! !

Kit it kt itE X E X E XX k
         

kE(X )  is the common thk  raw moment of all. 

By definition, characteristic function of xn  
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= characteristic function 
1 2
x x xn
n n n
  

 
 
 
 

  

=Product of characteristic function 1 2x x xn
n n n


 
 
 

  

thn  power of characteristic function ( )
X

n
 

(since where 
X

n
is the common random variable represent all of 1 2 nxx x

n n n
  ) 

  characteristic function of thX nn  power of C.F ‘X’ replaced by ‘t’ 

  characteristic function of ( / n)
n

X tn x     

 log of Xn = log ( / n)n tx  

=n 
2

2log( 1 ( ) ( ) ( ) )2 !2!

nit it it nE X E X E xnn n nn
       

=
21 12 2 2 2 3( ( ) ( ) ( ) ) ( ( ) ) ( ( ) ( ) ) ......)22! 2 3 2!

it i t it it it
n E X E X E X E X E X

n n n n n
           

( .......it   terms in powers of n1 in denominator) 

lim
n

 


C.F of )]
it

X en
  

Since C.F of it
X en

  

By Inversion theorem on characteristic function 

 DF of Xn  DF of the RV whose CF is e
it  as n  

 DF of Xn   DF of one point RV at   

i.e., dX an  one point random variable at   

p
Xn  in probability.       Or             ( 0

p
Xn     

    Hence the proof. 
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8.6 STRONG LAW OF LARGE NUMBERS: 
        

   In this section we obtain a stronger form of the law of large numbers discussed in 
section 6.3. Let 1 2, ,...X X be a sequence of RVs defined on a probability space  , , .S P   

Def1: We say that the sequence  nX  obeys the strong law of large numbers(SLLN) with 

respect to the norming constants nB  if there exists a sequence of(centering) 

constants nA such that 

    . .1 0a s
n n nB S A   as  n  .                               (1) 

We will obtain sufficient conditions for a sequence nX  to obey the SLLN. In what follows 

we will be interested mainly in the case  .nB n Indeed, when we speak of the SLLN we will 

assume that we are speaking of the norming constants  ,nB n  unless specified otherwise. 

Def 2: 

  Let  nX  be a sequence of RVs and   .n nE X a  the sequence of arithmetic means of RVs 

are,     

      
n

i
i=1

1
  X    nX n

  ,    
n

i
i=1

1
     na a

n
   

If   . 0as
n nX a   then  nX  obeys SLLN. 

 

8.7 KOLMOGOROV SLLN FOR I.I.D CASE: 
 

Statement: If 'kX s  are independent and identically distributed RVs then  / . . ,nS n c a s  

where c is a finite number, iff | | .E X    then .c EX   

Proof: 

       Define     0A | | , 0,1,2,... , .n X n n A       

On 1A ,n n nA B  n+1>|X| n,  so that 

0
0

,nB A


    

 | | 1 .
n

n n

B

nPB X n PB    

Summing over n, 
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1 1 0 1

| | 1 .n n n nnPB PA E X PA PA
   

                            (1) 

Suppose    S / . . .n n c a s    Then 

 11
0 . . .

1
n n nX S n S

a s
n n n n

      
 

By .nPA    from(1),  this implies that | | .E X     

Conversely suppose | | .E X    then from(1) .nPA    

Suppose, 

, | | ,

      =0,| | ,

k
k k k

k

X X X k

X k

 


 

i.e., k
kX  is kX  truncated at k and 

1

.   
n

k
n kS X then, since 'kX s are identically distributed, 

 k
1 1

P X | | .k
k k kX P X k PA

 

           

 Hence by lemma,  /nS n and  /nS n  are convergence equivalent and it is sufficient if we 

prove that    / . . .nS n EX a s  

    Now since n
nX X  and | | | |n

nX X  integrable, by dominated convergence theorem, as 

      .n
n

n

EX EX

 


 

 By  
1

/ / ,
n

k
n kE S n EX n EX

   
 
  as .n  Hence it is sufficient, if we prove that 

   / 0 . . ,n nS ES n a s  if we prove that 

 2 2/ .k
k

k

X k    

Now 

     

 

22 2

2
1 1

,

1 1 1 2
,

1 1

k
k k
k k

k

j j

X E X x dF x

k k k j j




 

 

 

  
 



 
for 1.j   

Hence 
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      

   

   

1
2 2 2 2

2
1 1 1 1

j 1
2 2

2
j=1 k=j j-1

j 1
2 2

2
j=1 j-1

1
/ ,

1
                           = ,

1
                         = ,

j jk
k
k

k j j j

j

j

j

k jj

X k x dF x x dF x
k

x dF x x dF x
k

x dF x x dF x
k


  

   

  



  



 
  

  
 

 
  

 
 

  

   

  

  

                         2 | | .x dF x




  





 

 This completes the proof of the theorem. 

8.7.1 Kolmogrov’s Theorem for SLLN: 

Statement:Let  Xn  be a sequence of independent and identically distributed random 

variables. Then a necessary and sufficient condition that 
.

,
a s

X n   finite, is that  E Xn  

exists and is equal to  . 

Proof:                                                                                                                                                                                
Necessity: Let An  be the event , 0,1, 2...,X n nn     so that 0A   . Hence Xn  are i.i.d 

and have the same distribution, say, as that of X  for all n. Thus, 

( ) , 1P A P X n A An n n        and  1 .1A A n X nnn                                                          

So ( 1) ( ) ( ) ( ) ( ) ,  for all n=1,2,... .1 11
n P A P A E X I n P A P An nn A A nnn

               
                                  

Now  summing over n, from 1 to  , we get 

( 1) ( ) ( 1) ( ) ( ) ( )1 11 1 1 1
n P A n P A E X nP A nP An nn nn n n n

   
            

(or)    

( ) 1 ( ).
1 1
P A E X P An n

n n

 
   

 
eq(1). This is valid for all the random variables of the 

sequence  Xn  since they are i.i.d . As
. .1

,  finite, so 0.1
a s a sX nnX X Xn n n

n n
 

    The 

independence of the random variables nX  implies the independence of the events An . 

 Then, by the Borel-Cantelli        

Lemma, 1 ,  i.e, ,  or ( ) .
1 1 1

XnP P X n P An nnn n n

   
                

Therefore from 

eq (1) we have   ,E X    and from the sufficiency condition it follows the ( ) .E X   

Sufficiency: Define , for n=1,2,… , the variables *Xn , which are Xn  truncated at n: 
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*  for 

        = 0 for ,

X X X nn n

X n

 


 

and  1 ,B m X m A X nm n                                                                                                                                      

so     if m>ncB Am n    

 if m .B nm   

Consider  
2 2

2 21 1

X XcI I I cB A B Am n m nn nn n

  
  

   


 

2

2
X

IBn m mn


 


 

2 1 12 ...
2 2 2( 1)

m
I m IB Bn m m mn m m

 
     

   
 

21
21( 1)

dy
m IBmm y

 
  

   
 

21 (1 )
2

dy
m I m IB Bm mm y

 
    
  

 

 2 ( 1) 2 ,m I X IB Bm m
         

Since ( 1)X m  inside Bm . Summing over m, we get 
2

2
21

X cI XAnn n


 


, 

So
* 2 2( ) ( )

2 ( )
2 2 21 1 1

xVar X E X Xn n E I E XcAnn n nn n n

   
        

    
 

Since ( )E X   . Hence, *Xn  obeys the SLLN, i.e., 
.* *( ) 0              (2)

1

a sn
X E X nn kk

  


 

Since  * ( ) ( )E X E XI E Xn cAn
      

, by the dominated convergence theorem, 

1 *( ) ,  n .      (3)
1

n
E X askn k

  

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By (2) and (3), we have            
.* a s

X n   

Next we show that *{ } and {X }Xn n  are equivalent sequences in the sense that 

*lim  P  for some n N 0X Xn nN
     

, and this implies that  { }Xn  obeys the SLLN if 

*{ }Xn  obeys if and the limits are the same. We have                         

* * for some n N 0 as NP X X P X Xn n n n
n N

              
 because by (1), 

( )
1

E X P X nn
n


       

. 

                                       i.e.,      *
1
P X Xn n

n

       
.         

8.8 CONCLUSION: 

The Law of Large Numbers (LLN) is a fundamental theorem in probability theory that 
describes how the average of a sequence of independent random variables behaves as the 
sample size increases. It is crucial in statistical estimation, data analysis, and real-world 
applications such as finance and quality control. 

a) Weak Law of Large Numbers (WLLN): This states that the sample mean converges 
in probability to the expected value as the sample size increases. It ensures that for 
large samples, observed averages approximate the true mean with high probability. 

b) Necessary and Sufficient Conditions for WLLN: These conditions determine when 
the weak law holds, often involving finite expectations and variance constraints. 

c) Chebyshev’s Weak Law of Large Numbers: Derived using Chebyshev’s 
inequality, it shows that a sequence of independent and identically distributed (i.i.d.) 
random variables with finite variance satisfies WLLN. 

d) Khinchin’s Weak Law of Large Numbers: A more general form of WLLN that 
only requires the existence of the expected value (not necessarily finite variance), 
making it applicable to a broader class of distributions. 

e) Strong Law of Large Numbers (SLLN): This states that the sample mean converges 
almost surely to the expected value, meaning that for almost every outcome, the 
sample mean equals the true mean in the long run. 

f) Kolmogorov’s SLLN for the i.i.d. Case: This is a special case of the strong law that 
applies when random variables are independent, identically distributed, and have a 
finite expected value. It guarantees that the sample mean converges with probability1. 

8.9 SELF ASSESSMENT QUESTIONS: 

1) Derive Chebyshev’s Weak Law of Large Numbers using Chebyshev’s inequality. 
2) Prove Khinchin’s Weak Law of Large Numbers for i.i.d. random variables. 
3) Compare and contrast Chebyshev’s and Khinchin’s WLLN in terms of assumptions 

and applicability. 
4) Show how the necessary and sufficient conditions for WLLN guarantee convergence 

in probability. 
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5) Discuss an example where the WLLN holds but the SLLN does not. 
6) Prove that Kolmogorov’s SLLN holds for i.i.d. random variables with finite 

expectation. 
7) Explain how the Law of Large Numbers is used in real-world applications, such as 

polling or financial modeling. 

8.10   SUGGESTED READING BOOKS: 

1. Modern probability theory by B. R. Bhat, Wiley EasternLimited. 
2. An introduction to probability theory and mathematical statistics by V. K. Rohatgi, 

John Wiley. 
3. AnOutlineofstatisticstheory-1, by A.M.GOON, M.K. Gupta and B. Das gupta, 

the World Press Private Limited, Calcutta. 
4. The Theory of Probability by B.V. Gnedenko, MIR Publishers, Moscow. 
5. Discrete distributions -N.L. Johnson and S. Kotz, John wiley & Sons. 
6. ContinuousUnivariatedistributions,vol.1&2N.L.JohnsonandS.Kotz,JohnWiley&Sons. 
7. Mathematical Statistics-Parimal Mukopadhyay, New Central Book Agency (P) Ltd., 

Calcutta. 

                                                                                                  Dr. Syed Jilani 

 

 

 

 
 



LESSON- 9 

DISCRETE DISTRIBUTIONS-I 
 

OBJECTIVES: 

After studying this lesson, students will be able to: 
 Understand the Concept of Compound Distributions 
 Define and Derive the Compound Binomial Distribution 
 Understand the concept of truncation  
 Differentiate between left-truncated, right-truncated, and doubly-truncated 

distributions 
 Know in detail about truncated binomial distribution 

STRUCTURE  

9.1  Introduction  

9.2  Compound Binomial distribution 

9.3 Applications of Compound binomial distribution     

9.4 Truncation 

9.5 Truncated Binomial distribution 

9.6 Conclusion 

9.7 Self assessment questions 

9.8 Further reading 

 

9.1   INTRODUCTION: 
 

The compound binomial distribution is an extension of the standard binomial 
distribution, where the number of trials follows a random distribution instead of being fixed.. 
By introducing randomness in the number of trials, the compound binomial distribution 
provides greater flexibility in real-world applications. The truncated binomial distribution 
arises when certain values of a standard binomial distribution are excluded, either from the 
lower or upper end, or both. This modification is necessary when specific outcomes are 
impossible or unobservable, such as in quality control, genetics, and survey sampling. The 
probability mass is redistributed among the remaining values to ensure a valid probability 
model. Both distributions enhance statistical modeling by accounting for uncertainty and 
constraints in real-world data. 
 

Consider a random variable X whose distribution depends upon the single parameter θ 
which instead of being regarded as fixed constant is also a random variable following 
particular distribution. In this case we say that  has a Compound distribution (or) Compose 
Distribution. 
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9.2  COMPOUND BINOMIAL DISTRIBUTION: 

Let us suppose that  are identically independently distributed Bernoulli variates with 

 

For a fixed n, the random variable X  is a binomial variate with 
parameters n and p and its probability mass function is given by  

 

which gives the Probability of "  " successes in '  ' independent trails with constant 
probability  of success for each trail. Now, suppose that  instead of being regarded as a 
fixed constant,  is also a random variable following Poisson law with Parameter . Then 

 

In such a case X is said to have compound binomial distribution. Then the joint probability 
function of X and  is given by 

 

                                     [   ] 
 Probability that  is the Probability of  successes in  trails. 
 Obviously  

 

Then marginal Distribution of X is given by 

 

9.3 APPLICATIONS OF COMPOUND BINOMIAL DISTRIBUTION: 
 
Some of the practical situations where we could come across the Compound Binomial 
Distribution are: Suppose that the probability of insect lying n eggs is given by the Poisson 

distribution  and the probability of an egg developing is p. Assuming natural 

independence of , the probability of a total of survivals is given by the poison distribution 
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with parameter . The probability that a Radioactive substance gives off  particles in a 
unit of time is .  

The probability that a given particle will strike a counter and be registered is p. Then the 
probability of registering  particles in a unit of time is also . If the probability of 
number of hits by lightening during any time interval  is  and it the probability of its 
hilting and damaging an individual is  then assuming stochastic independent the total 
damage dousing time  is p  

 

Mean: 
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9.4 TRUNCATION: 
 

In statistics, truncation refers to restricting a probability distribution by cutting off values 
below or above certain thresholds. The resulting distribution is called a truncated 
distribution. 

Let  be any function  Take  then this  will 
have a another functional form for . This is called Truncated Function. 
Suppose  is a probability density function or probability mass function of a random 
variable then  must satisfy the properties of probability density function namely 

(1)   
(ii)  . 

Take another function  which lies between  

 g(x) =0  if  and also it is if  x>b 
If  is a probability density function then  is also a pdf  if  satisfies the 
properties of p.d.f namely 
(i)  

(ii) . 

Define  (which does not contain  ) and we know that  is the pdf 

 

Let us define  it  
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Let us take  

 

 is called as Normalization Constant for truncation  is satisfying the properties of 
and  is also a pdf. Here  is called as Normalizing Constant for Truncation. 

 

i) Left Truncation: Some points are deleted on Lett ie. . 

 is called lett Truncation. 

ii) Right Truncation: Some points are deleted on right.  is 

called Right Truncation. 

iii) Double Truncation: Truncated left at  and right at . . 

 is called Double Truncation. 

iv) Truncation: let  be the pdf or p m f and  be the distribution function of the 
random variable. Let  be a subset of the range of the random variable. It p m f is 
redefined such that the total probability below  and above  is 0 and the entire 
probability is distributed . Then we say that distribution of random variable is 
truncated left at  and right at . 

In the case of discrete random variable  could be a set of individual elements and in the 
case of continuous random variable the set is an interval. The p.d.f of the truncated random 
variable is given by 

 
 

9.5   TRUNCATED BINOMIAL DISTRIBUTION: 
 
The p m f of ordinary binomial distribution  

 

Suppose this distribution is truncated left at  and right at  i.e., , points are 
deleated on left and  and points are deleated on right then the p m f  ofthe 
truncated binomial distribution will  



Centre for Distance Education 9.6 Acharya Nagarjuna University 

 

        = 0            otherwise 
if  

 

is called Symmetrically truncated Binomial Distribution. 
Only one point on left is deleted and no points on the right are deleated. It is called zero 
truncated Binomial Distribution. 

The pmf  of truncated Binomial  Distribution is 

 

 

   E  

 

 

 

is the mean of zero truncated Binomial Distribution. 
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M.G.F :  

 

 

 

the m g f of zero truncated Binomial Distribution-Similarly, the characteristic function of 
zero truncated Binomial Distribution is 

 

Additive property does not hold because zero is deleted and the range contains only positive 
integers. In that sense zero truncated Binomial Distribution is sometimes called a Positive 
Binomial Distribution. 
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9.6   CONCLUSION: 

The compound binomial distribution extends the binomial model by allowing the number 
of trials to be random, making it useful in insurance, biology, and network analysis. The 
truncated binomial distribution excludes certain outcomes, adjusting probabilities 
accordingly. It is applied in quality control, genetics, and sampling where specific values are 
unobservable. 

9.7  SELF ASSESSMENT QUESTIONS: 
  

1. How does a compound binomial distribution differ from a standard binomial distribution, 
and in what scenarios is it useful? 

2. What is the impact of introducing randomness in the number of trials on the properties of 
a compound binomial distribution? 

3. What are the different types of truncation in a binomial distribution, and how do they 
affect probability calculations? 

4. Why is a truncated binomial distribution necessary in real-world applications, and how is 
it used in quality control and genetics? 

5. How do compound binomial and truncated binomial distributions help in handling over 
dispersion and constrained data in statistical modeling? 

9.8 SUGGESTED BOOKS FOR FURTHER READING: 

1. "Discrete Distributions" – Norman L. Johnson, Adrienne W. Kemp, Samuel Kotz 
(Wiley) 

2. "Univariate Discrete Distributions" – Norman L. Johnson, Adrienne W. Kemp, 
Samuel Kotz (Wiley) 

3. "Statistical Distributions" – Merran Evans, Nicholas Hastings, Brian Peacock (Wiley) 
4. "Statistical Size Distributions in Economics and Actuarial Sciences" – Christian 

Kleiber, Samuel Kotz (Wiley) 
5. "Discrete Statistical Distributions" – T.P. Hutchinson, C.D. Lai (Routledge) 

                                                                     

            Dr. I.B.N. Hima Bindu 

 



LESSON 10 

DISCRETE DISTRIBUTIONS -II 

OBJECTIVES: 

After studying this lesson, students will be able to: 
 Explain the concepts of compound Poisson and truncated Poisson distributions and 

how they extend the standard Poisson model. 
 Derive and interpret key properties such as the mean, variance, and probability mass 

function for both distributions. 
 Understand the impact of truncation and compounding on probability calculations and 

distributional behavior. 
 Compare these distributions with standard Poisson and other related models, 

highlighting their advantages in real-world applications. 
 Apply compound Poisson models and truncated Poisson models to real time 

problems. 

STRUCTURE: 

10.1    Introduction 

10.2    Compound Poisson distribution 

10.3    Common use cases 

10.4    Truncated Poisson distribution 

10.5    Common use cases  

10.6    Conclusion 

10.7    Self assessment questions 

10.8    Suggested books for further reading 

10.1 INTRODUCTION: 

A compound Poisson distribution is an extension of the standard Poisson 
distribution, where each event contributes a random value instead of a fixed unit. It is 
commonly used in risk modeling, queuing theory, and insurance, where the number of 
occurrences follows a Poisson process, but the impact of each event varies. This distribution 
helps model situations where both the frequency and severity of events are uncertain, such as 
the total claim amounts in insurance or packet arrivals in network traffic. 

A truncated Poisson distribution is a modified version of the Poisson distribution in 
which certain values are excluded. Truncation can be at the lower end, upper end, or both, 
depending on the problem context. For example, in biological studies, data may be truncated 
because very small counts are not observed, or in accident data analysis, certain extreme 
values may be removed. The distribution is adjusted to ensure valid probability calculations 
for the remaining outcomes. 
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10.2  COMPOUND POISSON DISTRIBUTION: 

Let  be a  so that 

                

         Where  itself is a continuous random variable with generalized gamma density 

            

Let us consider the two dimensional random vector  in which one variable is discreate 
and the other is continuous. For a constant h>0 and , the joint density of  and  is 
given by 

 

Dividing both sides by  and proceeding to the limits as  we get 

 

But 

 

  Where . . . 

 

Integrating w. r. to  over o to  and using gamma integral, the marginal probability 
function of  is given by 
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where . 
Thus the marginal distribution of  is a negative binomial with parameters  . 

10.3 COMMON USE CASES: 

The compound Poisson distribution is widely used in real-world applications where both 
the number of events and their individual impacts vary. Some key use cases are: 

1. Insurance and Risk Management 
o Models total claim amounts, where the number of claims follows a Poisson 

process, and each claim amount is a random variable. 
o Used in actuarial science to estimate risk and determine insurance premiums. 

2. Finance and Economics 
o Describes stock market fluctuations where the number of transactions follows 

a Poisson process, and each transaction has a variable impact. 
o Models aggregate losses in credit risk analysis. 

3. Telecommunications and Network Traffic 
o Used to model data packet arrivals in communication networks, where packets 

arrive randomly, and their sizes vary. 
o Helps in network capacity planning and performance optimization. 

4. Reliability and Maintenance 
o Models equipment failures where the number of failures follows a Poisson 

process, and the severity of each failure is random. 
o Used in predictive maintenance and reliability engineering. 

5. Biology and Epidemiology 
o Applied in genetics to model the occurrence and severity of mutations. 
o Used in epidemiology to study disease outbreaks, where the number of cases 

follows a Poisson process, and the severity varies. 

10.4    TRUNCATED POISSON DISTRIBUTION: 
 
The p m f of the ordinary Poisson Distribution is. 
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Suppose this Distribution is truncated left at  and right at  i.e., . points are 
deleted on left and  points are deleted on right then the p m f  of truncated Poisson 
Distribution will be 

 

is Called the truncated Poisson Distribution truncated left at  and right at . 

Zero Truncated Poisson Distribution: 

If only one point on left is deleted  i. e, called zero Truncated Poisson Distribution. 

 

Since        Distribution function   
                                                                                                        otherwise. 

Moment Generating Function, Mean and Variance 
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Mean and variance are not equal. 
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10.5 COMMON USE CASES: 
 
The truncated Poisson distribution is a modified version of the standard Poisson distribution 
where certain values (typically low or high) are excluded. It is useful in scenarios where 
observations are censored or restricted. Below are some common applications: 

1. Accident and Insurance Data Analysis 
o Used when minor accidents or claims below a certain threshold are not 

reported. 
o Helps in modeling only significant claims while ignoring small-value claims. 

2. Biological and Ecological Studies 
o Applied in species abundance models where very rare species may not be 

recorded. 
o Used in population studies where data collection is limited to a specific range. 

3. Quality Control and Defect Analysis 
o Models the number of defective items in a batch when no-defect items are not 

recorded. 
o Used in industrial inspection processes where only high-defect products are 

considered. 
4. Queueing Systems and Service Industry 

o Helps in analyzing waiting times where very short or very long queues are not 
recorded. 

o Used in modeling call center operations where extremely short calls are 
ignored. 

5. Medical and Epidemiological Studies 
o Used in disease incidence models where mild or undiagnosed cases are not 

included. 
o Applied in survival analysis where only patients with a minimum number of 

hospital visits are considered. 

10.6 CONCLUSION: 

A compound Poisson distribution generalizes the Poisson model by allowing each event to 
contribute a random value instead of a fixed unit. It is useful in risk modeling, insurance 
claims, and network traffic analysis, where both event counts and magnitudes vary. A 
truncated Poisson distribution modifies the standard Poisson model by excluding certain 
values, either from the left, right, or both. It is applied in accident analysis, quality control, 
and ecological studies, where small or extreme counts are unobservable or irrelevant. Both 
distributions help create more realistic statistical models for practical applications in diverse 
fields. 

10.7 SELF ASSESSMENT QUESTIONS: 
 

1. How does a compound Poisson distribution differ from a standard Poisson 
distribution, and in what scenarios is it useful? 

2. What are the key properties of a compound Poisson distribution, and how does the 
introduction of random event sizes affect its mean and variance? 

3. What is a truncated Poisson distribution, and how is the probability mass adjusted 
when certain values are excluded? 
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4. In which real-world applications would a truncated Poisson distribution be more 
appropriate than a standard Poisson model? 

5. How do compound Poisson and truncated Poisson distributions refine statistical 
modeling in areas like insurance, quality control, and risk assessment? 

10.8 SUGGESTED BOOKS FOR FURTHER READING: 

1. "Univariate Discrete Distributions" – Norman L. Johnson, Adrienne W. Kemp, 
Samuel Kotz (Wiley) 

2. "Discrete Distributions" – Norman L. Johnson, Adrienne W. Kemp, Samuel Kotz 
(Wiley) 

3. "Statistical Size Distributions in Economics and Actuarial Sciences" – Christian 
Kleiber, Samuel Kotz (Wiley) 

4. "Stochastic Processes" – Sheldon M. Ross (Wiley) 
5. "Probability and Statistical Inference" – Robert V. Hogg, Elliot A. Tanis, Dale L. 

Zimmerman (Pearson) 

                                                                                                            Dr. I.B.N. Hima Bindu 

 

 



LESSON -11 

CONTINUOUS DISTRIBUTIONS (LAPLACE, 
WEIBULL, LOGISTIC AND PARETO 

DISTRIBUTIONS) 
 

OBJECTIVES: 

After studying this topic, students will be able to: 
 Understand the Characteristics of Continuous Distributions 
 Analyze Probability Density and Cumulative Distribution Functions 
 Compute Moments and Statistical Properties 
 Compare and Contrast Different Continuous Distributions 
 Apply These Distributions in Practical Scenarios 

STRUCTURE: 

11.1   Introduction 

11.2   Laplace Distribution 

11.3   Two Parameters Laplace Distribution 

11.4   Weibull Distribution 

11.5   Three parameter Weibull distribution 

11.6   Logistic Distribution 

11.7   Pareto Distribution 

11.8   Conclusion 

11.9   Self Assessment Questions 

11.10  Suggested books for further reading 

11.1 INTRODUCTION: 

Continuous probability distributions play a crucial role in statistical modeling and data 
analysis. Among them, the Laplace, Weibull, Logistic, and Pareto distributions are 
widely used in various fields due to their unique properties and applications. The 
Laplace distribution is symmetric and exhibits heavier tails than the normal distribution, 
making it suitable for modeling financial returns, signal processing, and Bayesian 
statistics. The Weibull distribution is a versatile model frequently used in reliability 
analysis, survival studies, and failure time predictions. The Logistic distribution 
resembles the normal distribution but has heavier tails and a closed-form cumulative 
distribution function. The Pareto distribution is a heavy-tailed distribution commonly 
applied in economics, finance, and risk analysis. It effectively models wealth distribution, 
insurance claims, and internet traffic data, where a small percentage of values contribute 
to most of the total impact. Understanding these distributions and their properties allows 
for better data interpretation and decision-making across various domains. 
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11.2 LAPLACE DISTRTBUTION ( or Double Exponential Distribution): 
 

Consider the standard Exponential namely  where range is  then the range can 
be extended to negative part namely  also by giving a new density as follows. 

Let  
Then  satisfies the two conditions 

 (i)  
(ii) . 

 This Density function is called standard Double Exponential Density (or) Laplace 
Density or it also known as Laplace second law of errors invented by Laplace in 1774 

 To Prove that . 

Proof: 

 

 

 

put  in the first integral and . 
 in the second integral. 

 

 Hence proved. 

Further  we have  

 

  is symmetric about zero, 
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11.2.1 Characteristic Function: 

 

 is the characteristic furnation of Exponential Distribution. 

Put  
 in first integral 

 in the second integral. 

 

 

The second integral is the characteristic function of standard Negative Exponential is given 
by . 

The first integral is almost same as the second integral except that i is replaced by –i which is 
the complex conjugate of the second integral. 

 

           we have ……………. 

 

On adding  
similarly  
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Hence the characteristic function for of Laplace distribution  is  

 

11.2.2 Moments: 
 

coefficient of  in the  characteristic function gives kth  moment.. 

 

 

 

Variance  

 

 Moments are 

 

 

 

 

 

 

 

 



Probability Theory and Distribution 11.5  Continuous Distribution   
 

11.2.3 Moment Generating Function : 

 

11.2.4  Cumulant Generating Function ( CGF):  

 

         =  

  if  is odd 
              if  is even 
 

11.3 TWO PARAMETERS LAPLACE DISTRIBUTION: 

          If   is location Parameter, is Sale Parameter then pdf is given by  

 

                      =0 otherwise 

Properties: 
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                                                       Put  

 

                                            

 

11.4 WEIBULL DISTRIBUTION: 

Take a constant  and a r.v Xc follows Exponential (standard negative exponential) 
distribution then  X follows Weibull Distribution. 

 

then we say . Normal. 

 

We know that  follows Exponential 

 

then     ,which is the pdf of Weibull Distribution. 

Definition:  A continuous r .v  assuming non-negative values is said to have Weibull 
Distribution with parameter  and  if it's pdf is given by    , 

  
                                                                                                otherwise 
Weibull Distribution was Discovered by Swedish mathematician Weibull in  1939 
cumulative. Distribution for  is given by 

 

 

Put  
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  here  is Called Shape Parameter (or) Power Parameter. 

11.5 THREE PARAMETERS WEIBULL DISTRIBUTION: 

 

 

 ~ Standard Exponential  

 

 P.d.f is given by 

 

This is called Three Parameters  weibull distribution. Here  is called location 
parameter, is called scale parameter and c is called shape (or) Power parameter  

Note: If we take  we get the pdf to of Standard Weibull Distribution 

 

 

 

 

 

 

 



Center for Distance Education  11.8   Acharya Nagarjuna University 

11.5.1 Moments:  

 

 

It can be obtained from tables of Crammer function If  then we get the four raw 
moments 

11.5.2 Properties: 

 

 

 

If  is very small number 0 . (Curve of  is bell shape and tends to normal ie., if 
 Weibull follows Normal) 

11.5.3 Moment Generating Function: We know that  coefficient is  th moment of x 

 



Probability Theory and Distribution 11.9  Continuous Distribution   
 

 

11.5.4 Characteristic function:  Additive property does not hold 

good. 
If  are two shape parameters of two independent Weibull r .v's say  

 

 

11.6 LOGISTIC DISTRIBUTION: 

The logistic distribution is a continuous probability distribution widely used in statistics, 
machine learning, and reliability analysis. It resembles the normal distribution but has heavier 
tails, making it useful in modeling growth processes, logistic regression, and survival 
analysis. 

11.6.1 Probability Density Function (p.d.f.): 

The probability density function (p.d.f.) of the logistic distribution is given by: 

where: 

µ  is the location parameter (mean and median). 

   is the scale parameter, which determines the spread of the distribution. 

The shape of the logistic distribution is similar to a normal distribution but with a sharper 
peak and heavier tails. 

11.6.2 Cumulative Distribution Function (c.d.f.): 

The cumulative distribution function (c.d.f.) is given by: 

 

This function has a sigmoidal (S-shaped) curve, making it widely used in logistic regression 
and neural networks. 
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Mean, Variance, and Moments: 

 Mean: E[X]=μ 

 Variance: Var(X)=  
  Skewness: Zero (symmetrical distribution) 
 Kurtosis: Higher than the normal distribution, making it more prone to extreme 

values. 

11.6.3 Properties:  

1. Symmetry – The distribution is symmetric about μ\muμ, similar to the normal 
distribution. 

2. Heavy Tails – The probability of extreme values is higher compared to the normal 
distribution. 

3. Closed-Form c.d.f. – Unlike the normal distribution, the logistic distribution has an 
explicit cumulative distribution function, making it easier to work with in some 
applications. 

4. Logistic Regression Link – The logistic function is used in classification problems to 
model probabilities. 

11.6.4 Applications:  

1. Logistic Regression – The c.d.f. is used as the activation function in binary 
classification models. 

2. Economics and Growth Models – Models population growth and market saturation. 
3. Survival Analysis and Reliability Engineering – Used to model failure times and life 

distributions. 
4. Extreme Value Theory – Approximates distributions of maximum and minimum 

values. 

11.7 PARETO DISTRIBUTION: 

Let  be the number of persons whose income exceeds a given quantity  at a particular time. 
Then pareto has proposed that the number  can be assumed to follow a mathematical 
function given by 

Where  and  (  is known as pareto constant and shape parameter) are two constants. If the 
proportion of persons whose income exceeds  with a minimum income of  units is given by 

 

. 
then the cumulative Distribution function is 
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the Equations (1) & (2) are almost similar in the form where in the place of , we have . 
Equation (3) satisfies the properties of a Distribution function. Its' density is given by 

                                                    otherwise 
 is called the P.d. f of Pareto Distribution. 

11.7.1 M.G.F of Pareto Distribution: 

 

 

which we can’t write in closed form. rth moment is given by 
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For the other moments. 

 

11.7.2 Mean Deviation about Mean: 

 

(a>2) 
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The value of this ratio is 0.513 when . 
When , this value is 0.597 
As a tends to infinite, the ratio tend to  

 

which is not in continued form. Additive property is not satisfied. 

11.8  CONCLUSION: 

Understanding the Laplace, Weibull, Logistic, and Pareto distributions provides valuable 
insights into real-world data modeling. These distributions help in reliability analysis, risk 
assessment, machine learning, and economics. Mastering their properties enables effective 
statistical modeling, allowing for better decision-making in diverse applications such as 
engineering, finance, healthcare, and social sciences. 

11.9 SELF ASSESSMENT QUESTIONS 

1. What are the key characteristics of the Laplace, Weibull, Logistic, and Pareto 
distributions, and how do they differ from each other? 

2. How does the shape and behavior of the Weibull distribution change based on its 
parameter values, and why is it widely used in reliability analysis? 

3. In what scenarios is the Logistic distribution preferred over the Normal distribution, 
and what are its key advantages? 

4. Why is the Pareto distribution considered a heavy-tailed distribution, and how is it 
applied in modeling wealth and risk analysis? 

5. What are the key real-world applications of each of these distributions, and how do 
their properties make them suitable for different fields? 

11.10 SUGGESTED BOOKS FOR FURTHER READING: 

1. "Continuous Univariate Distributions, Volume 1" – Norman L. Johnson, Samuel 
Kotz, N. Balakrishnan (Wiley) 

2. "Statistical Distributions" – Merran Evans, Nicholas Hastings, Brian Peacock (Wiley) 
3. "A First Course in Probability" – Sheldon Ross (Pearson) 
4. "Mathematical Statistics with Applications" – William Mendenhall, Robert J. Beaver, 

Barbara M. Beaver (Cengage Learning) 
5. "An Introduction to Probability Theory and Its Applications" – William Feller 

(Wiley) 

                                                                                     

                                                                                                             Dr. I.B.N. Hima Bindhu 



LESSON -12 

ORDER STATISTICS AND THEIR 
PROBABILISTIC PROPERTIES 

 

OBJECTIVES 

After completing this lesson, students will be able to 
 Understand the Concept of Order Statistics 
  Learn what order statistics are and why they are essential. 
 Understand how they represent the sorted values from a random sample. 
 Identify the first order statistic (minimum), last order statistic (maximum), and 

intermediate order statistic within a given sample. 
 Derive the distribution function of single order statistic 
 Analyze  joint density functions 

 

STRUCTURE 

12.1  Introduction        

12.2  Order statistics - Definition 

12.3  Distribution function of a single order statistic 

12.3.1 CDF of smallest order Statistic. 

12.3.2 CDF of Longest order Statistic. 

12.3.3 CDF of rth order Statistic. 

12.4  Probability Density Function of a single order statistic 

12.5  Joint Probability Density Function of order statistics 

12.5.1 Joint Probability Density Function of two order statistics 

12.5.2 Joint Probability Density Function of k order statistics 

12.5.3 Joint Probability Density Function of all n order statistics 

12.6 Solved Examples  

12.7 Conclusion 

12.8 Self assessment questions 

12.9 Suggested books 

 

12.1 INTRODUCTION: 
 

    Order statistics play a crucial role in probability theory and statistical inference. 
They refer to the values obtained by arranging a random sample in increasing order. 
These statistics provide valuable insights into the extreme values, median, range, and 
variability of a dataset, making them useful in various real-world applications such as 
reliability analysis, risk assessment, and quality control. 
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12.2    ORDER STATISTICS:  
 
Definition: 

Let  be -dimensional random vector and  be an -tuple 
assumed by . Now, by arranging  in increasing order of magnitude, 
we get 

 

where  , i.e.,  is the smallest value in  is the 
second smallest value of  and so on  s  
are dependent because of the inequality relations among them. 

Definition : The function  of  that takes on the value  in each possible 
sequence   of values assumed by is known as the  rth order statistic 
or the statistic of order '  '.  is called the set of order statistics for 

 

Note: Let be an - dimensional random variable. Let  be the order 
statistic of order '  '. Then  is also random variable. 

12.3 DISTRIBUTION FUNCTION OF A SINGLE ORDER STATISTIC: 
 

Let  be  independent and identically distributed variates each with 
distribution function  and  be set of order statistics for 

. If  denote the cumulative distribution function 
.) of the -order statistic .  

 
12.3.1 The c.d.f of the smallest  order statistic  is 

  

                                      =  

                                      =1- [1-F(x)]n   

Hence, the c. d. f of smallest order statistic X(1) is 
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12.3.2 The c. d. f of largest order statistics  is 

 

Hence the c. d. f of largest order statistics  is  

12.3.3 The  of  order  statistic is 

 

 

 of  order statistic: is  

 The  of rth  order  statistic  can be written as 

Where  

is the "incomplete beta function" and values if this function have been tabulated in 
Biometrika tables of pearson & Hartley. Hence the probability points of an order statistic can 
be obtained with the help of incomplete beta function. 
Note: Taking  in (3), we get the  of smallest order statistic 

 

Similarly by taking , we get the of largest order statistic is 
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12.4 PROBABILITY DENSITY FUNCTION (P. D. F.) OF  ORDER STATISTIC: 
 

The . of a random variable  can be defined as 

Using this concept, the . of  order Statistic is 

 

Here the event  can be expressed as: 

 

 

          (r-1)                                 1  (n-r) 

 (i=1,2,…..,r-1)  

  

                           x       x+h 

   

From the above figure 

 

and  for one . 
and  for the remaining  of the  's. 
Using the multinomial probability law, we have 

 

Where                             

 

Substituting these in (3), we get 
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12.5  JOINT  OF  ORDER STATISTICS: 
 

The joint probability density function of order statistics helps analyze the 
relationships between multiple ranked values in a sample.  
 

12.5.1 Joint  of two order statistics: 
 
Let  be the p.d.f. of two order statistics and  of 

  then 

 

Here the event  can be expressed as 
 

 

             (r-1)     1  1 

 (s-r-1) (n-s) 

 

      X      X+                          y           

                                     X(r)            X(s) 

From the figure,  we have   for  of the  

 

 for  of , 

 

    and  for  of the  

By using multinomial probability,  we have. 

By. Substituting (2) in (1), we get  
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Hence the density given in (3) is the  of two order statistics  and  

 of the order statistics . 

12.5.2 Joint P. d. f. of K-order statistics:  

We can extend the result of joint P. d. f of two order statistics (using multi normal 
Probabilities) to get the .  of -order  statistics  when 

 and  is for  

 

 

 

            ( -1)    1                      1  1   ................      1                

 (  

 

  

 
12.5.3 Joint  p.d.f of  all the -order statistics: 

 
Theorem:  The  joint  of  is given by 

 

Proof:- Let as assume that  be i.i.d r. v.’s of the continuous type with p. d. f  
and  be the set of order statistics for . Since the  are all 
continuous type r. v’s, it follows  with probability 1 that , if 

 be set of values assumed by . 



Probability Theory and Distribution 12.7  Order Statistics and their properties  

The transformation from  to  is not one - to -one, since a total 
of   possible arrangements of  in increasing order of magnitude. Thus there are  
inverses to the transformation. For example, one of the  ! permutations might be 

 

Then the corresponding inverse is 

 

The Jacobian of the transformation is the determinant of an  identity matrix with rows 
rearranged, since each  equals one and only one of . Therefore  and 
hence  

The same expression holds to each of the n! Arrangements. 

 

12.6 SOLVED EXAMPLES: 

Example  : Let  be i.i.d r. v’s with  common p d f  

 

then the Joint p d f of the order statistics  is 

 

Example (2): -  If  are continuous i.i.d  's with  
the joint  of  is 

 

then find the marginal  of  
Sol: The marginal  is 
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Example (3):- Let  be   random variables with common p d f  

 

then the  of  th order statistic  of , is 

 

The joint  of  and  is  

 
 

12.7 CONCLUSION: 

Order statistics focus on arranging sample values in increasing order and studying their 
properties. The smallest value in a sample is the first order statistic, while the largest is the 
last order statistic. Any value in between represents a general order statistic. The distribution 
function of an order statistic provides the probability that it does not exceed a given value, 
which helps in estimating extreme values and medians. The probability density function 
describes the likelihood of an order statistic taking a specific value. The joint probability 
density function examines the probability of multiple order statistics occurring together. 
These concepts are widely applied in reliability testing, quality control, extreme value 
analysis, and statistical inference. 

12.8 SELF ASSESSMENT QUESTIONS: 

1. What are order statistics, and how are they defined in a given sample? 
2. How does the distribution function of an order statistic help in probability analysis? 
3. What is the significance of the probability density function of a single order statistic? 
4. How is the probability density function of a single order statistic derived from a given 

sample? 
5. What does the joint probability density function of order statistics represent? 
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6. How can order statistics be used to analyze extreme values in a dataset? 
7. In what ways are order statistics applied in reliability testing and quality control? 
8. How does the joint probability density function of order statistics differ from the 

probability density function of a single order statistic? 
9. Why are order statistics important in survival analysis and risk assessment? 
10. How can order statistics be used in real-world scenarios such as finance, engineering, 

and medical research? 

12.9 SUGGESTED BOOKS: 

1. "Order Statistics" – H. A. David and H. N. Nagaraja 
2. "Introduction to Probability and Statistics" – J. S. Milton and J. C. Arnold 
3. "Mathematical Statistics with Applications" – W. Mendenhall, R. J. Beaver, and B. 

M. Beaver 
4. "An Introduction to Probability Theory and Its Applications" – William Feller 
5. "Probability and Statistical Inference" – Robert V. Hogg, Elliot A. Tanis, and Dale L. 

Zimmerman 
6. "Mathematical Statistics" – John E. Freund 

 

                                                                                                  Dr. I.B.N. Hima Bindu 

 

 



LESSON - 13 

DISTRIBUTION OF RANGE AND ITS 
APPLICATIONS 

OBJECTIVES:  
 
After completing this lesson, students will be able to 

 Understand the definition of range in the context of order statistics. 
 Deriving the distribution of range 
 Apply range of Order Statistics to rectangular and uniform distributions. 

STRUCTURE: 

13.1 Introduction  

13.2  Distribution of range 

13.3  Solved examples 

13.4  Applications of distribution of range  

13.4.1  In rectangular distribution 

13.4.2  In Uniform distribution 

13.5 Conclusion 

13.6 Self assessment questions 

13.7 Suggested reading books      

13.1 INTRODUCTION: 

The range of a dataset is a measure of how spread out the values are. It is calculated as the 
difference between the largest and smallest values in a sample. For example, if we record the 
daily temperatures in a city for a week and the highest temperature is 35°C while the lowest 
is 20°C, the range would be 15°C. The distribution of the range refers to the probability of 
different possible values of this range when data is collected from a particular probability 
distribution. It helps in understanding the expected spread of data in repeated samples. 

13.2  DISTRIBUTION OF RANGE: 

Let us consider the joint p.d.t. of the order statistics  (say) and  of 

. 

 



Center for Distance Education  13.2   Acharya Nagarjuna University 
 

Let     be the difference of two order statistics. To obtain the distrain 

of  , consider the joint . of , ant  given  (1) and transform  i.e., 

 to the new variables  and  such that 

 

 Jacobian transformation is 

 

 The joint .f .of is 

 

     

Integrating ,  w.r. to  over  to , we get 

 

By taking  and  in the above result (3), we get the p.d.f of the range  -  
which 

 

Now the distribution function of the range  from (4)  is 
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 The distribution function of the Range is 

 

and the p. d. f. of Range is. 

 

13.3 SOLVED EXAMPLES: 

Example 1: Suppose  is sample of size n drawn from a distribution. Show 
that 

 or the smallest order statistics of  follows 
exponential distribution with parameter if and only if each  follows exponential distain 
with parameter  

Sol: Necessary Condition: 

 Let  be   exponential variates with parameter  and its density in given 
by 

 The distribution function  is 

Now the distribution function for of  is given by 
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Hence (3) is the distribution function of exponential distribution with parameter , which 
implies  (smallest order statistics) has exponential distribution with parameter . 
 

Sufficient condition: Let  is the smallest order statistic follow 
exponential distribution with  parameter , then  we have  to show that , follows 
exponential distain with parameter , 

 

which is the distribution function  of  the exponential distribution with parameter . 

 Hence the sufficient condition. 

Example 2: Show that in odd samples of size   from Uniform distribution over , the 

mean and variance of the distribution of median are  and  respectively. 
Ans :- The  uniform distribution  over  is. 

(1) 

and the distribution function is 

 
Let the sample size n , where  is +ve integer , 

Then the sample be . 
 The median observation is  

Now consider the  of  order statistic  of the sample  is 

 

 using , the  of the   ( median) of  is 
mean is 
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similarly we get  

 
 

13.4 APPLICATIONS OF DISTRIBUTION OF RANGE:  

 

13.4.1 In Rectangular distribution: 

 The distribution of the range in a rectangular (uniform) distribution has several applications 
across different domains, particularly in statistics, reliability analysis, quality control, and 
extreme value theory. The following are some applications: 

1. Quality Control and Engineering 

 The range is often used as a measure of process variability in quality control. 
 In statistical process control (SPC), the range of a sample is used in range charts (RR-          

charts) to monitor the consistency of production processes. 
 When data follows a uniform distribution (e.g., sensor readings, certain manufacturing 

tolerances), the distribution of the range helps set control limits. 

2. Extreme Value Analysis 

 Since the range is the difference between the maximum and minimum values in a 
sample, studying its distribution is useful in extreme value theory. 
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 Applications include modeling environmental extremes (e.g., daily temperature range), 
financial risks (e.g., range of stock prices), and other cases where uniformity is assumed 
in the underlying process. 

3. Reliability Engineering 

 In reliability testing, if failure times are assumed to follow a uniform distribution over an 
interval, the distribution of the range helps in predicting time to failure spread. 

 It is useful in stress testing to determine worst-case scenarios. 

4. Signal Processing and Communications 

 In signal processing, uniform noise models often arise, and the range distribution can be 
used to estimate signal variation and dynamic range. 

 Applications include modulation techniques, image processing, and error detection. 

5. Simulation and Random Sampling 

 When simulating random variables from a uniform distribution, the expected range 
provides insights into sample variability. 

 Used in Monte Carlo simulations for modeling random behavior in various applied 
fields. 

6. Estimation and Statistics 

 The range can serve as a simple estimator of variability in small samples when variance 
estimation is difficult. 

 In some cases, the range is used as a statistic to estimate parameters of the uniform 
distribution itself (e.g., estimating the width of a uniform distribution). 

13.4.2 In exponential distribution: 

The distribution of the range in an exponential distribution has important applications in 
reliability analysis, survival analysis, queueing theory, and extreme value statistics. Since the 
exponential distribution is often used to model waiting times, failure times, and interarrival 
times, the range of a sample provides useful insights into variability, worst-case scenarios, 
and system reliability. 

Key Applications of the Range in Exponential Distribution: 

1. Reliability and Life Testing 

 In reliability engineering, the exponential distribution models the time until failure of 
components in systems with a constant failure rate. 

 The range (difference between the longest and shortest lifetimes in a sample) helps in 
estimating the variability of lifetimes.  

 The distribution of the range can be used to:  

o Compare reliability between different components. 
o Set warranty periods based on observed failure ranges. 
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o Design stress tests to ensure product durability. 

2. Extreme Value Analysis 

 The range distribution in an exponential setting helps in modeling extremes of waiting 
times. 

 Applications include:  

o Predicting longest and shortest waiting times in a system (e.g., time between major          
earthquakes, longest vs. shortest service times in a queue). 

o Analyzing rare events, such as extreme failure times in industrial machines. 

3. Queueing Theory and Operations Research 

 Many real-world systems involve queues where service times or interarrival times follow 
an exponential distribution (e.g., call centers, hospital emergency rooms). 

 The range helps in:  
o Estimating the maximum and minimum waiting times in a given period. 
o Setting upper and lower bounds for queue management and resource allocation. 
o Designing efficient scheduling systems to reduce waiting time variability. 

4. Statistical Inference and Estimation 

 The range of an exponential sample is sometimes used as an estimator of the scale 
parameter (λ\lambda), particularly in cases where traditional methods (like the mean) are 
unreliable. 

 In parameter estimation, the distribution of the range can assist in:  
o Estimating the rate parameter of an exponential process. 
o Testing goodness-of-fit by comparing observed ranges with expected ranges. 

5. Simulation and Monte Carlo Methods 

 Many simulations involving stochastic processes use exponentially distributed waiting 
times. 

 The range helps in analyzing variability in simulated processes. 
 Example: Simulating hospital emergency room wait times—the range provides insight 

into how long the longest and shortest patients wait. 

6. Signal Processing and Communication Systems 

 In some communication systems, signal arrival times or packet transmission times follow 
an exponential distribution. 

 The range of these times helps in evaluating network performance, such as:  
o Delays in data transmission. 
o Worst-case response times in real-time systems. 
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13.5 CONCLUSION: 

The range of a dataset is the difference between the largest and smallest values. In 
statistics, understanding the distribution of the range helps in analyzing variability and 
extreme values. For a rectangular (uniform) distribution, the range follows a specific pattern 
based on order statistics. When values are taken from a uniform distribution, the range 
depends on the highest and lowest observations. This is useful in quality control and random 
number generation. In the exponential distribution, the range plays a key role in reliability 
studies and survival analysis. Since the exponential distribution models waiting times and 
lifetimes, analyzing the range helps in understanding failure rates and risk assessment. The 
study of range distribution is widely applied in inferential statistics, engineering, and 
decision-making processes. 

13.6 SELF ASSESSMENT QUESTIONS: 

1. What is the range of a dataset, and why is it important in statistical analysis? 
2. How is the distribution of the range related to order statistics? 
3. In a rectangular (uniform) distribution, how does the sample size affect the expected 

range? 
4. What are some real-world applications of studying the range in a uniform distribution? 
5. How is the range distributed in the case of an exponential distribution? 
6. Why is the exponential distribution particularly useful in reliability and survival 

analysis? 
7. How does the parameter of an exponential distribution influence the expected range? 
8. Compare the behavior of the range in uniform and exponential distributions. How do 

they differ? 
9. In which fields can the distribution of the range be applied, and why is it useful in those 

areas? 
10. Can the distribution of the range be extended to other probability distributions? Give an 

example. 

13.7   SUGGESTED  BOOKS: 

1. David, H. A., & Nagaraja, H. N. (2003). Order Statistics (3rd ed.). Wiley. 
2. Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N. (1992). A First Course in Order 

Statistics. SIAM. 
3. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous Univariate 

Distributions, Volume 1 (2nd ed.). Wiley. 
4. Casella, G., & Berger, R. L. (2002). Statistical Inference (2nd ed.). Duxbury Press. 
5. Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the Theory of 

Statistics (3rd ed.). McGraw-Hill. 

                                                                                             

    Dr. I.B.N.Hima Bindu 

                                                                                        


